Advertisement

Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale

  • Thomas F. BudingerEmail author
  • Mark D. Bird
  • Lucio Frydman
  • Joanna R. Long
  • Thomas  H. Mareci
  • William  D. Rooney
  • Bruce Rosen
  • John  F. Schenck
  • Victor  D. Schepkin
  • A. Dean Sherry
  • Daniel  K. Sodickson
  • Charles  S. Springer
  • Keith  R. Thulborn
  • Kamil Uğurbil
  • Lawrence  L. Wald
Review Article

Abstract

An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.

Keywords

Magnetic resonance imaging Ultrahigh magnetic fields High temperature superconductors Diffusion tensor imaging Parallel transmit and receive strategies Human brain chemistry Magnetic field physiologic effects 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Pohmann R, Speck O, Scheffler K (2016) Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn Reson Med 75(2):801–809PubMedCrossRefGoogle Scholar
  2. 2.
    Uludag K, Muller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48:150–165PubMedCrossRefGoogle Scholar
  3. 3.
    Ugurbil K, Xu J, Auerbach EJ, Moeller S, Vu AT, Duarte-Carvajalino JM, Lenglet C, Wu X, Schmitter S, Van de Moortele PF, Strupp J, Sapiro G, De Martino F, Wang D, Harel N, Garwood M, Chen L, Feinberg DA, Smith SM, Miller KL, Sotiropoulos SN, Jbabdi S, Andersson JL, Behrens TE, Glasser MF, Van Essen DC, Yacoub E, for the WU-Minn HCP Consortium (2013) Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. Neuroimage 80:80–104PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Setsompop K, Alagappan V, Gagoski B, Witzel T, Polimeni J, Potthast A, Hebrank F, Fontius U, SchmittF WL, Adalsteinsson A (2008) Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil. Magn Reson Med 60(6):1422–1432PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    McNab JA, Edlow BL, Witzel T, Huang SY, Bhat H, Heberlein K, Feiweier T, Liu K, Keil B, Cohen-Adad J, Tisdall MD, Folkerth RD, Kinney HC, Wald LL (2013) The human connectome project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80:234–245PubMedCrossRefGoogle Scholar
  6. 6.
    Smeibidl P, Bird MD, Ehmler H, Dixon IR, Heinrich J, Hoffmann M, Kempfer S, Bole S, Toth J, Prokhnenko O, Lake B (2016) First hybrid manget for neutron-scattering at Helmholtz Zentrum Berlin. IEEE Trans Appl Supercond 25(3):1–6CrossRefGoogle Scholar
  7. 7.
    Martovetsky N, Michael P, Minervini J, Radovinsky A, Takayasu M, Thome R, Ando T, Isono T, Kato T, Nakajima N, Nishijima G, Nunoya Y, Sugimoto M, Takahashi Y, Tsuji H, Bessette D, Okuno K, Ricci M (2011) ITER CS model coil and CS insert test results. IEEE Trans Appl Supercond 11(1):2030–2033CrossRefGoogle Scholar
  8. 8.
    Lvovsky Y, Stautner EW, Zhang Z (2013) Novel technologies and configuration of superconducting magnets for MRI. Supercond Sci Technol 26:171CrossRefGoogle Scholar
  9. 9.
    Vedrine P, Aubert G, Beaudet F, Belorgey J, Berriaud C, Bredy P, Donati A, Dubois O, Gilgrass G, Juster FP, Meuris C, Molinie F, Nunio F, Payn A, Schild T, Scola L, Sinanna A (2010) Iseult/INUMAC whole body 11.7 T MRI magnet status. IEEE Trans Appl Supercond 20(3):696–701CrossRefGoogle Scholar
  10. 10.
    Bird MD, Dixon IR, Toth J (2014) Large, high-field magnet projects at the NHMFL. IEEE Trans Appl Supercond 25(3):4300606Google Scholar
  11. 11.
    Miller JR, Bird MD, Bonito-Oliva A, Eyssa Y, Kenney WJ, Painter T, Schneider-Muntau H-J, Summers LT, Van Sciver SW, Welton S, Wood RJ, Williams JEC, Bobrov E, Iwasa Y, Leupold M, Stejskal V, Weggel R (1994) An overview of the 45 T Hybrid magnet system for the new national high magnetic field laboratory. IEEE Trans Magn 30(4):1563–1571CrossRefGoogle Scholar
  12. 12.
    Markiewicz WD, Dixon IR, Swenson CA, Marshall WS, Painter TA, Bole ST, Cosmus T, Parizh M, King M, Ciancetta G (2000) 900 MHz wide bore NMR spectrometer magnet at NHMFL. IEEE Trans Appl Supercond 10(1):728–731CrossRefGoogle Scholar
  13. 13.
    Wilson MN (1983) Superconducting magnets. Oxford University Press, Oxford, p 46Google Scholar
  14. 14.
    Majkic G, Galstyan E, Selvamanickam V (2010) High performance 2G-HTS wire using a novel MOCVD system. Appl Supercond IEEE Trans Supercond 25(3):1–4CrossRefGoogle Scholar
  15. 15.
    Larbalestier DC, Jiang J, Trociewitz UP, Kametani F, Scheuerlein C, Dalban-Canassy M, Matras M, Chen P, Craig NC, Lee PJ, Hellstrom EE (2014) Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat Mater 13(4):375–381PubMedCrossRefGoogle Scholar
  16. 16.
    Nakashima T, Yamazaki K, Kobayashi S, Kagiyama T, Kikuchi M, Takeda S, Osabe G, Fujikami J, Osamura J (2015) Drastic improvement in mechanical properties of DI-BSCCO wire with novel lamination material. Appl Supercond IEEE Trans Supercond 25(3):1–5CrossRefGoogle Scholar
  17. 17.
    Weijers HW, Markiewicz WD, Voran AJ, Gundlach SR, Sheppard WR, Jarvis B, Johnson ZL, Noyes PD, Lu J, Kandel H, Ba H, Gavrilin AV, Viouchkov YL, Larbalestier DC, Abraimov DV (2014) Progress in the development of a superconducting 32 T magnet with REBCO high field coils. Appl Supercond IEEE Trans Supercond 24(3):1–5CrossRefGoogle Scholar
  18. 18.
    Yanagisawa Y, Nakagome H, Hosono M, Hamada M, Kiyoshi T, Hobo F, Takahashi M, Yamazaki T, Maeda H (2008) Towards beyond-1 GHz solution NMR: internal 2H lock operation in an external current mode. J Magn Reson 192(2):329–337PubMedCrossRefGoogle Scholar
  19. 19.
    Nishiyama Y, Pandey MK, Florian P, Fyon F, Hashi K,Ohki S, Nishijima G. Matsumoto S, Noguchi T,Deguchi T, Gotom A, Shimizu T, Maeda H,Takahashi M, Yanagisawa Y, Tanaka R, Nemoto T, Miyamoto T, Suematsu H, Saito K, Miki T (2015) 1020 MHz LTS/HTS NMR: II. Application to solid-state NMR. In: Presented at the 56th experimental nuclear magnetic resonance conference (ENC), Asilomar, CAGoogle Scholar
  20. 20.
    van der Laan DC, Goodrich LF, Noyes P, Trociewitz UP, Godeke A, Abraimov D, Francis A, Larbalestier DC (2015) Engineering current density in excess of 100 A/mm2 at 20 T in CORC magnet cables containing RE-Ba2Cu3O7-δ tapes with 38 m thick substrates. Supercond Sci Technol 28:124001 (p 8) CrossRefGoogle Scholar
  21. 21.
    Godeke D, Cheng D, Dietderich DR, English CD, Felice H, Hannaford CR, Prestemon SO, Sabbi G, Scanlan RM, Hikichi Y, Nishioka J, Hasegawa T (2008) Development of wind-and-React bi-2212 accelerator magnet technology. IEEE Trans Appl Supercond 18(2):516–519CrossRefGoogle Scholar
  22. 22.
    Takayasu M, Chiesa L, Allen NC, Minervini JV (2016) Present status and recent development of the twisted stacked-tape cable (TSTC) conductor. IEEE Trans Appl Supercond. doi: 10.1109/TASC.2016.252182723 Google Scholar
  23. 23.
    Haiying L, Jun Xiao L (1996) Gradient coil mechanical vibration and image quality degradation. In: Proceedings of the society of magnetic resonance, p 1393Google Scholar
  24. 24.
    Mansfield P, Chapman BL, Bowtell R, Glover P, Coxon R, Harvey PR (1995) Active acoustic screening: reduction of noise in gradient coils by Lorentz force balancing. Magn Reson Med 33(2):276–281PubMedCrossRefGoogle Scholar
  25. 25.
    Jia F, Schultz G, Testud F, Wetz AM, Weber H, Littin S, Yu H, Hennig J, Zaitsev M (2016) Performance evaluation of matrix gradient coils. MAGMA 29(1):59–73PubMedCrossRefGoogle Scholar
  26. 26.
    Stockmann JP, Witzel T, Blau JN, Polemini JR, Zhao W, Keil B, Wald LL (2013) Combined Shim RF array for highly efficient shimming of the brain at 7 T. In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, p 225Google Scholar
  27. 27.
    Han H, Song AW, Trrung TK (2013) Integrated parallel reception, excitation and shimming (IPRESS). In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, p 664Google Scholar
  28. 28.
    Stockmann JP, Witzel T, Keil B, Polimeni JR, Mareyam A, LaPierre C, Setsompop K, Wald L (2015) A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn Reson Med 75(1):441–451PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38(4):591–603PubMedCrossRefGoogle Scholar
  30. 30.
    Vaughan JT, Snyder CJ, DelaBarre LJ, Bolan PJ, Tian J, Bolinger L, Adriany G, Andersen P, Strupp J, Ugurbil K (2009) Whole Body imaging at 7T: preliminary results. Magn Reson Med 61(1):244–248PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Katscher U, Börnert P, Leussler C, Van Den Brink JS (2003) Transmit sense. Magn Reson Med 49(1):144–150PubMedCrossRefGoogle Scholar
  32. 32.
    Setsompop K, Alagappan V, Gagoski BA, Potthast A, Hebrank F, Fontius U, Franz Schmitt F, Wald LL, Adalsteinsson E (2009) Broadband slab selection with B1+ mitigation at 7 T via parallel spectral-spatial excitation. Magn Reson Med 61(2):493–500PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wiesinger F, de Moortele V, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP (2004) Parallel imaging performance as a function of field strength: an experimental investigation using electrodynamic scaling. Magn Reson Med 52(5):953–964PubMedCrossRefGoogle Scholar
  34. 34.
    Guerin B, Gebhardt M, Serano P, Adalsteinsson E, Hamm M, Pfeuffer J, Nistler J, Wald LL (2015) Comparison of simulated parallel transmit body arrays at 3 T using excitation uniformity, global SAR, local SAR, and power efficiency metrics. Magn Reson Med 73(3):1137–1150PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Grissom WA, Xu D, Kerr AB, Fessler JA, Noll DC (2009) Fast large-tip-angle multidimensional and parallel RF pulse design in MRI. IEEE Trans Med Imaging 28(10):1548–1559PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Padormo F, Beqiri A, Hajnal JV, Malik SJ (2015) Parallel transmission for ultrahigh-field imaging. NMR Biomed. doi: 10.1002/nbm.3313 PubMedGoogle Scholar
  37. 37.
    Cloos MA, Wiggins C, Wiggins G, Sodickson D (2014) Plug and play parallel transmission at 7 and 9.4 Tesla based on principles from MR fingerprinting. In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, 21:542Google Scholar
  38. 38.
    Winter L, Niendorf T (2015) On the electrodynamic constraints and antenna array design for human in vivo MR up to 70 Tesla and EPR up to 3 GHz. Proc Intl Soc Magn Reson Med 23:1807Google Scholar
  39. 39.
    Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31(3):1038–1050PubMedCrossRefGoogle Scholar
  40. 40.
    Godenschweger F, Kägebein U, Stucht D, Yarach U, Sciarra A, Yakupov R, Lüsebrink F, Schulze P, Speck O (2016) Motion correction in MRI of the brain. Phys Med Biol 61(5):R32–R56PubMedCrossRefGoogle Scholar
  41. 41.
    Chen L, Beckett A, Verma A, Feinberg DA (2015) Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage 122:281–287PubMedCrossRefGoogle Scholar
  42. 42.
    Stucht D, Danishad KA, Schulze P, Godenschweger F, Zaitsev M, Speck O (2015) Highest resolution in vivo human brain MRI using prospective motion correction. PLoS One 10(7):e0133921. doi: 10.1371/journal.pone.0133921.eCollection PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Hoult DI, Richards R (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1):71–85Google Scholar
  44. 44.
    Cao Z, Park J, Cho ZÄ, Collins CM (2015) Numerical evaluation of image homogeneity, signal-to-noise ratio, and specific absorption rate for human brain imaging at 1.5, 3, 7, 10.5, and 14 T in an 8-channel transmit/receive array. J Magn Reson Imaging 41(5):1432–1439PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Schepkin VD (2016) Sodium MRI of glioma in animal models at ultrahigh magnetic fields. NMR Biomed 29(2):175–186PubMedCrossRefGoogle Scholar
  46. 46.
    Turner R (2002) How much cortex can a vein drain? Downstream dilution of activation-related cerebral blood oxygenation changes. Neuroimage 16(4):1062–1067PubMedCrossRefGoogle Scholar
  47. 47.
    Yacoub E, Harel N, Uğurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci 105(30):10607–10612PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Zimmermann J, Goebel R, De Martino F, van de Moortele P-F, Feinberg D, Adriany G, Chaimow D, Shmuel D, Uğurbil K, Yacoub E (2011) Mapping the organization of axis of motion selective features in human area MT using high-field fMRI. PLoS One 6(12):e28716PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    De Martino F, Moerel M, Ugurbil K, Goebel R, Yacoub E, Formisano E (2015) Frequency preference and attention effects across cortical depths in the human primary cortex. Proc Natl Acad Sci USA 112:16036–16041PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Muckli L, De Martino F, Vizoli L, Petro LS, Smith FW, Ugurbil K, Goebel R, Yacoub E (2015) Contextural feedback to superficial layers of V1. Curr Biol 25:2690–2695PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Olman CA, Harel N, Feinberg DA, He S, Zang P, Ugurbil K, Yacoub E (2012) Layer-specific fMRI reflects different neuronal computations at different depths in human V1. PLoS One 7:e332536. doi: 10.1371//journal.pone.0032536 CrossRefGoogle Scholar
  52. 52.
    Nasr S, Polimeni JR, Tootell RB (2016) Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J Neurosci 36(6):1841–1857PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Heidemann RM, Anwander A, Feiweier T, Knösche TR, Turner R (2012) k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7T. Neuroimage 60(2):967–978PubMedCrossRefGoogle Scholar
  54. 54.
    Gorgolewski KJ, Mendes N, Wilfling D, Wladimirow E, Gauthier CJ, Bonnen T, Ruby FJ, Trampel R, Bazin PL, Cozatl R, Smallwood J, Margulies DS (2015) A high resolution 7-Tesla resting-state fMRI test-retest dataset with cognitive and physiological measures. Sci Data 2:140054PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Goa PE, Koopmans PJ, Poser BA, Barth M, Norris DG (2014) BOLD fMRI signal characteristics of S1- and S2-SSFP at 7 Tesla. Front Neurosci 8:49PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Setsompop K, Feinberg DA, Polimeni JR (2016) Rapid brain MRI acquisition techniques at ultra-high fields. NMR Biomed. doi: 10.1002/nbm.3478 PubMedGoogle Scholar
  57. 57.
    Basser PJ, Pierpaoli C (2011) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson 213(2):560–570PubMedCrossRefGoogle Scholar
  58. 58.
    Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 73:239–254PubMedCrossRefGoogle Scholar
  59. 59.
    Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582PubMedCrossRefGoogle Scholar
  60. 60.
    Vu A, Auerbach E, Lenglet C, Moeller S, Sotiropoulos SN, Jbabdi S, Andersson J, Yacoub E, Ugurbil K (2015) High resolution whole brain diffusion imaging at 7T for the human connectome project. Neuroimage 122:318–331PubMedCrossRefGoogle Scholar
  61. 61.
    Ford AA, Colon-Perez L, Triplett WT, Gullett JM, Mareci TH, FitzGerald DB (2013) Imaging white matter in human brainstem. Front Hum Neurosci 7:400PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Colon-Perez LM, King M, Parekh M, Boutzoukas A, Carmona E, Couret M, Klassen R, Mareci TH, Carney PR (2015) High-field magnetic resonance imaging of the human temporal lobe. Neuroimage Clin 9:58–68PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Leuze CW, Anwander A, Bazin PL, Dhital B, Stüber C, Reimann K, Geyer S, Turner R (2014) Layer-specific intracortical connectivity revealed with diffusion MRI. Cereb Cortex 24(2):328–339PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shemesh N, Dumez JÄ, Frydman L (2013) Longitudinal relaxation enhancement in 1H NMR spectroscopy of tissue metabolites via spectrally selective excitation. Chem A Eur J 19(39):13002–13008CrossRefGoogle Scholar
  65. 65.
    Guivel-Scharen V, Sinnwell T, Wolff SD, Balaban RS (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133(1):36–45, 49PubMedCrossRefGoogle Scholar
  66. 66.
    Jones CK, Polders D, Hua J, Hoogduin HJ, Zhou J, van Zijl PCM (2012) In Vivo 3D whole-brain pulsed steady state chemical exchange saturation transfer at 7T. Magn Reson Med 67(6):1579–1589PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Van Zijl P, Yadav N (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jones CK, Huang A, Xu J, Edden RA, Schär M, Hua J, Oskolkov N, Zacà D, Zhou J, McMahon MT, Pillai JJ, van Zijl PC (2013) Nuclear overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124PubMedCrossRefGoogle Scholar
  69. 69.
    Lu A, Atkinson IC, Zhou XJ, Thulborn KR (2013) PCr/ATP ratio mapping of the human head by simultaneously imaging of multiple spectral peaks with interleaved excitations and flexible twisted projection imaging readout trajectories at 9.4 T. Magn Reson Med 69(2):538–544PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Zhu X, Du F, Zhang N, Zhang Y, Lei H, Zhang X, Qiao H, Uğurbil K, Chen W (2009) Advanced in vivo heteronuclear MRS approaches for studying brain bioenergetics driven by Mitochondria. In: Hyder F (ed) Dynamic brain imaging: multi-modal methods and in vivo applications. Humana Press, New York, pp 317–357CrossRefGoogle Scholar
  71. 71.
    Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA, Springer CS (2015) Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging. NMR Biomed 28(6):607–623PubMedCrossRefGoogle Scholar
  72. 72.
    Springer CS, Li X, Tudorica LA, Oh N, Roy SY-C, Chui AM, Naik ML, Holtorf ML, Afzala A, Rooney WD, Huang W (2014) Intratumor mapping of intracellular water lifetime: metabolic images of breast cancer? NMR Biomed 27(7):760–773PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Rooney WD, Sammi MK, Grinstead JW, Pollaro J, Selzer A, Li X, Springer CS (2013) Contrast reagent detection sensitivity increases with B0: 3T and 7T comparison of the human head. In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol 21, p 1224Google Scholar
  74. 74.
    Rooney WD, Johnson G, Li X, Cohen ER, Kim S-G, Uğurbil K, Springer CS (2007) Magnetic field and tissue dependences of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med 57:308–318PubMedCrossRefGoogle Scholar
  75. 75.
    Kiyatkin EA, Lenoir M (2012) Rapid fluctuations in extracellular brain glucose levels induced by natural arousing stimuli and intravenous cocaine: fueling the brain during neural activation. J Neurophysiol 108(6):1669–1684PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Valvassori SS, Calixto KV, Budni J, Resende WR, Varela RB, de Freitas KV, Gonçalves CL, Streck EL, Quevedo J (2013) Sodium butyrate reverses the inhibition of Krebs cycle enzymes induced by amphetamine in the rat brain. J Neural Transmis 120(12):1737–1742CrossRefGoogle Scholar
  77. 77.
    Lu A, Atkinson IC, Claiborne TC, Damen FC, Thulborn KR (2010) Quantitative sodium imaging with a flexible twisted projection pulse sequence. Magn Reson Med 63(6):1583–1593PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Thulborn KR, Lui E, Guntin J, Jamil S, Sun Z, Claiborne T, Atkinson IC (2016) Quantitative sodium MR imaging of the human brain at 9.4 Tesla provides assessment of tissue sodium concentration and cell volume fraction during normal ageing. Invited submission to special edition. NMR Biomed 29:137–143PubMedCrossRefGoogle Scholar
  79. 79.
    Thulborn KR, Lu A, Atkinson IC, Damen F, Villano JL (2009) Quantitative sodium MR imaging and sodium bioscales for the management of brain tumors. Neuroimaging Clin N Am 19(4):615–624PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Qian Y, Zhao T, Zheng H, Weimer J, Boada FE (2012) High-resolution sodium imaging of human brain at 7 T. Magn Reson Med 68(1):227–233PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Fleysher L, Oesingmann N, Brown R, Sodickson DK, Wiggins GC, Inglese M (2013) Noninvasive quantification of intracellular sodium in human brain using ultrahigh-field MRI. NMR Biomed 26(1):9–19PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Umathum R, Rösler MB, Nagel AM (2013) In vivo 39K MR imaging of human muscle and brain. Radiology 269(2):569–576PubMedCrossRefGoogle Scholar
  83. 83.
    Atkinson IC, Claiborne TC, Thulborn KR (2014) Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla. Magn Reson Med 71(5):1819–1825PubMedCrossRefGoogle Scholar
  84. 84.
    Nagel AM, Lehmann-Horn F, Weber M-A, Jurkat-Rott K, Wolf MB, Radbruch A, Umathum R, Semmler W (2014) In vivo 35Cl MR imaging in humans: a feasibility study. Radiology 271(2):585–595PubMedCrossRefGoogle Scholar
  85. 85.
    Schepkin VD, Choy IO, Budinger TF, Obayashi DY, Taylor SE, DeCampli WM, Amartur SC, Young JN (1998) Sodium TQF NMR and intracellular sodium in isolated crystalloid perfused rat heart. Magn Reson Med 39(4):557–563PubMedCrossRefGoogle Scholar
  86. 86.
    Schepkin VD, Odintsov BM, Litvak I, Gor’kov PL, Brey WW, Neubauer A, Budinger TF (2015) Efficient detection of bound potassium and sodium using TQTPPI pulse sequence. In: Proceedings of the scientific meeting, International Society for Magnetic Resonance in Medicine, vol 23, p 2375Google Scholar
  87. 87.
    Zhu XÄ, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W (2005) In vivo 17O NMR approaches for brain study at high field. NMR Biomed 18(2):83–103PubMedCrossRefGoogle Scholar
  88. 88.
    Atkinson IC, Thulborn KR (2010) Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage 51(2):723–733PubMedCrossRefGoogle Scholar
  89. 89.
    Katscher U, Voigt T, Findeklee C, Vernickel P, Nehrke K, Dossel O (2009) Determination of electric conductivity and local SAR via B1 mapping. IEEE Trans Med Imaging 28(9):1365–1374PubMedCrossRefGoogle Scholar
  90. 90.
    van Lier AL, Brunner DO, Pruessmann KP, Klomp DW, Luijten PR, Lagendijk JJ, van den Berg CA (2012) B1+ Phase mapping at 7 T and its application for in vivo electrical conductivity mapping. Magn Reson Med 67(2):552–561PubMedCrossRefGoogle Scholar
  91. 91.
    van Lier AL, Raaijmakers A, Voigt T, Lagendijk JJW, Leijten PR, Katscher U, van den Berg CAT (2014) Electrical properties tomography in the human brain at 1.5, 3, and 7 T: a comparison study magnetic resonance in medicine. Magn Reson Med 71:354–363PubMedCrossRefGoogle Scholar
  92. 92.
    Liu J, Zhang X, Van de Moortele P-F, Schmitter S, He B (2013) Determining electrical properties based on B1 fields measured in an MR scanner using a multi-channel transmit/receive coil: a general approach. Phys Med Biol 58(13):4395PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sodickson DK, Alon L, Deniz CM, Ben-Eliezer N, Cloos M, Sodickson LA, Collins CM, Wiggins GC, Novikov DS (2013) Generalized local Maxwell tomography for mapping of electrical property gradients and tensors. In: Proceedings of the 21st annual meeting of ISMRM, Salt Lake City, Utah, p 417575Google Scholar
  94. 94.
    Budinger TF (1981) Nuclear magnetic resonance (NMR) in vivo studies: known thresholds for health effects. J Comput Assist Tomogr 5:800–811PubMedCrossRefGoogle Scholar
  95. 95.
    Schenck JF (1992) Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann NY Acad Sci 649(1):285–301PubMedCrossRefGoogle Scholar
  96. 96.
    National Research Council (2013) Current Status and future direction of high magnetic field science in the United States. National Academies Press, Washington, DC, Appendix F. pp 196–206Google Scholar
  97. 97.
    Vaughan T, DelaBarre L, Snyder C, Tian J, Akgun C, Shrivastava D, Liu W, Olson C, Adriany G, Strupp J, Andersen P, Gopinath A, van de Moortele PF, Garwood M, Ugurbil K (2006) 9.4 T human MRI: preliminary results. Magn Reson Med 56(6):1274–1282PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR (2010) Vital signs and cognitive function are not affected by 23-sodium and 17-oxygen magnetic resonance imaging of the human brain at 9.4 T. J Magn Reson Imaging 32(1):82–87PubMedCrossRefGoogle Scholar
  99. 99.
    Chakeres DW, Kangarlu A, Boudoulas H, Young DC (2003) Effect of static magnetic field exposure of up to 8 tesla on sequential human vital sign measurements. J Magn Reson Imaging 18:346–352PubMedCrossRefGoogle Scholar
  100. 100.
    Atkinson IC, Renteria L, Holly Burd H, Neil H, Pliskin NH, Thulborn KR (2015) Safety of human MRI at static fields above the FDA 8T guideline: sodium imaging at 9.4T does not affect vital signs or cognitive ability (2015) Online access December 2015. http://indigo.uic.edu/bitstream/handle/10027/7232/94THumanSafety_prepress.pdf
  101. 101.
    Budinger TF, Fischer H, Hentschel D, Reinfelder H-E, Schmitt F (1991) Physiological effects of fast oscillating magnetic field gradients. J Comput Assist Tomogr 15(6):909–914PubMedCrossRefGoogle Scholar
  102. 102.
    Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12(1):2–19PubMedCrossRefGoogle Scholar
  103. 103.
    Houpt TA, Pittman DW, Barranco JM, Brooks EH, Smith JC (2003) Behavioral effects of high-strength static magnetic fields on rats. J Neurosci 23(4):1498–1505PubMedGoogle Scholar
  104. 104.
    Houpt TA, Cassell JA, Riccardi C, DenBleyker MD, Hood A, Smith JC (2007) Rats avoid high magnetic fields: dependence on an intact vestibular system. Physiol Behav 92(4):741–747PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci USA 89:7683–7687PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Budinger TF, Glaeser RM (1977) Measurement of focus and spherical abberation of an electron microscope objective lens. Ultramicroscopy 2:31–41CrossRefGoogle Scholar
  107. 107.
    Hong FT (1995) Magnetic field effects on biomolecules, cells, and living organisms. Biosystems 36(3):187–229PubMedCrossRefGoogle Scholar
  108. 108.
    Fukunaga M, Li T-Q, van Gelderen P, de Zwart JA, Shmueli K, Yao B, Lee J, Maric D, Aronova MA, Zhang G, Leapman RD, Schenck JF, Merkle H, Duyn JH (2010) Layer-specific variation of iron content in cerebral cortex as a source of MRI contrast. Proc Natl Acad Sci USA. 107(8):3834–3839PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850PubMedCrossRefGoogle Scholar
  110. 110.
    Berry MV, Geim AK (1997) Of flying frogs and levitrons. Eur J Phys 18:307–313CrossRefGoogle Scholar
  111. 111.
    Roth BJ, Basser PJ (2009) Mechanical model of neural tissue displacement during Lorentz effect imaging. Magn Reson Med 61:59–64PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wikswo JP, Barach JP (1980) An estimate of the steady magnetic field strength required to influence nerve conduction. IEEE Trans Biomed Eng 27(12):722–723PubMedCrossRefGoogle Scholar
  113. 113.
    Tenforde TS (2005) Magnetically induced electric fields and currents in the circulatory system. Prog Biophys Mol Biol 87(2):279–288PubMedCrossRefGoogle Scholar
  114. 114.
    d’Arsonval A (1896) Dispositifs pour la mesure des courants alternatifs de toutes fréquences. C R Soc Biol (Paris) 2:450–451Google Scholar
  115. 115.
    Lövsund P, Őberg PA, Nilsson SEG (1980) Magnetophosphenes: a quantitative analysis of thresholds. Med Biol Eng Comput 18(3):326–334PubMedCrossRefGoogle Scholar
  116. 116.
    Keltner JR, Roos MS, Brakeman PR, Budinger TF (1990) Magnetohydrodynamics of blood flow. Magn Reson Med 16(1):139–149PubMedCrossRefGoogle Scholar
  117. 117.
    Weiss J, Herrick RC, Taber KH, Contant C, Plishker GA (1992) Bio-effects of high magnetic fields: a study using a simple animal model. Magn Reson Imaging 10(4):689–694PubMedCrossRefGoogle Scholar
  118. 118.
    Patel M, Williamsom RA, Dorevitch S, Buchanan S (2008) Pilot study investigating the effect of the static magnetic field from a 9.4-T MRI on the vestibular system. J Occup Environ Med 50(5):576–583PubMedCrossRefGoogle Scholar
  119. 119.
    Theysohn JM, Maderwald S, Kraff O, Moenninghoff C, Ladd ME, Ladd SC (2008) Subjective acceptance of 7 Tesla MRI for human imaging. Magn Reson Mater Phys Biol Med 21(1–2):63–7294CrossRefGoogle Scholar
  120. 120.
    Glover P, Cavin I, Qian W, Bowtell R, Gowland P (2007) Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics 28(5):349–361PubMedCrossRefGoogle Scholar
  121. 121.
    van Nierop LEV, Slottje P, Zandvort MJV, De Vocht F, Kromhout H (2012) Effects of magnetic stray fields from a 7 Tesla MRI scanner on neurocognition: a double-blind randomised crossover study. Occup Environ Med 69(10):761–768Google Scholar
  122. 122.
    Cason AM, Kwon B, Smith JC, Houpt TA (2009) Labyrinthectomy abolishes the behavioral and neural response of rats to a high-strength static magnetic field. Physiol Behav 97(1):36–43PubMedCrossRefGoogle Scholar
  123. 123.
    Roberts DC, Marcelli V, Gillen JS, Carey JP, Della Santina CC, Zee DS (2011) MRI magnetic field stimulates rotational sensors of the brain. Curr Biol 21(19):1635–1640PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kassemi M, Deserranno D, Oas J (2005) Fluid-structural interactions in the inner ear. Comput Struct 83(2):181–189CrossRefGoogle Scholar
  125. 125.
    Mian OS, Li Y, Antunes A, Glover PM, Day BL (2016) Effect of head pitch and roll orientations on magnetically induced vertigo. J Physiol 594(4):1051–1067PubMedCrossRefGoogle Scholar
  126. 126.
    Wolff S, Crooks LE, Brown P, Howard R, Painter RB (1980) Tests for DNA and chromosomal damage induced by nuclear magnetic resonance imaging. Radiology 136(3):707–710PubMedCrossRefGoogle Scholar
  127. 127.
    Okano H (2008) Effects of static magnetic fields in biology: role of free radicals. Front Biosci 13:6106–6125PubMedCrossRefGoogle Scholar
  128. 128.
    Schenck JF (2005) Physical interactions of static magnetic fields with living tissues. Progr Biophys Molecular Biol 87(2–3):185–204CrossRefGoogle Scholar
  129. 129.
    Miyakoshi J (2005) Effects of static magnetic fields relevant to human health. Progr Biophys Molecular Biol 87(2–3):213–223CrossRefGoogle Scholar
  130. 130.
    Vijayalaxmi FM, Speck O (2015) Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat Res 764:51–63CrossRefGoogle Scholar
  131. 131.
    Bras W, Diakun GP, Díaz JF, Maret G, Kramer H, Bordas J, Medrano FJ (1998) The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and X-ray fiber diffraction study. Biophys J 74:1509–1521PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Denegre JM, Valles JM Jr, Lin K, Jordan WB, Mowry KL (1998) Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci USA 95(25):14729–14732PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Valiron O, Peris L, Rikken G, Schweitzer A, Saoudi Y, Remy C, Job D (2005) Cellular disorders induced by high magnetic fields. J Magn Reson Imaging 22(3):334–340PubMedCrossRefGoogle Scholar
  134. 134.
    Cai R, Yang H, He J, Zhu W (2009) The effects of magnetic fields on water molecular hydrogen bonds. J Molecular Struct 938:15–19CrossRefGoogle Scholar
  135. 135.
    Paul A-L, Ferl RJ, Meisel MW (2006) High magnetic field induced changes of gene expression in Arabidopsis. BioMagn Res Technol 4:7PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Brand M, Ellmann S, Sommer M, May MS, Eller A, Wuest W, Engert C, Achenbach S, Kuefner MA, Baeuerle T, Lell M, Uder M (2015) Influence of cardiac MR imaging on DNA double-strand breaks in human blood lymphocytes. Radiology 277(2):406–412PubMedCrossRefGoogle Scholar
  137. 137.
    Reddig A, Fatahi M, Friebe B, Guttek K, Hartig R, Godenschweger F, Roggenbuck D, Ricke J, Reinhold D, Speck O (2015) Analysis of DNA double-strand breaks and cytotoxicity after 7 Tesla magnetic resonance imaging of isolated human lymphocytes. PLoS One 10(7):e0132702. doi: 10.1371/journal.pone.0132702 (eCollection 2015) PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Fatahi M, Reddig A, Vijayalaxmi Friebe B, Hartig R, Prihoda TJ, Ricke J, Roggenbuck D, Reinhold D, Speck O (2016) DNA double-strand breaks and micronuclei in human blood lymphocytes after repeated whole body exposures to 7T Magnetic Resonance Imaging. Neuroimage. doi: 10.1016/j.neuroimage.2016.03.023 PubMedGoogle Scholar
  139. 139.
    Giovannelli L, Pitozzi V, Moretti S, Boddi V, Dolara P (2006) Seasonal variations of DNA damage in human lymphocytes: correlation with different environmental variables. Mutat Res 593(1–2):143–152PubMedCrossRefGoogle Scholar
  140. 140.
    Télez M, Ortiz-Lastra E, Gonzalez AJ, Flores P, Huerta I, Ramírez JM, Barasoain M, Criado B, Arrieta I (2010) Assessment of the genotoxicity of atenolol in human peripheral blood lymphocytes: correlation between chromosomal fragility and content of micronuclei. Mutat Res 695(1–2):46–54PubMedCrossRefGoogle Scholar
  141. 141.
    Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity or repair, and induction of cancer. Proc Natl Acad Sci 100(22):12871–12876PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Winter L, Oezerdem C, Hoffmann W, van de Lindt T, Periquito J, Ji Y, Ghadjar P, Budach V, Wust P, Niendorf T (2015) Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1 GHz). Radiat Oncol 10:201Google Scholar

Copyright information

© ESMRMB 2016

Authors and Affiliations

  • Thomas F. Budinger
    • 1
    Email author
  • Mark D. Bird
    • 2
  • Lucio Frydman
    • 2
    • 3
  • Joanna R. Long
    • 4
  • Thomas  H. Mareci
    • 4
  • William  D. Rooney
    • 5
  • Bruce Rosen
    • 6
  • John  F. Schenck
    • 7
  • Victor  D. Schepkin
    • 2
  • A. Dean Sherry
    • 8
  • Daniel  K. Sodickson
    • 9
  • Charles  S. Springer
    • 5
  • Keith  R. Thulborn
    • 11
  • Kamil Uğurbil
    • 10
  • Lawrence  L. Wald
    • 6
  1. 1.Lawrence Berkeley National LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.National High Magnetic Field LaboratoryFlorida State UniversityTallahasseeUSA
  3. 3.Weizmann InstituteRehovotIsrael
  4. 4.McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  5. 5.Oregon Health and Sciences UniversityPortlandUSA
  6. 6.Massachusetts General HospitalHarvard Medical SchoolHarvardUSA
  7. 7.General Electric Corporate ResearchSchenectadyUSA
  8. 8.University of Texas Southwestern Medical CenterDallasUSA
  9. 9.School of MedicineNew York UniversityNew YorkUSA
  10. 10.University of MinnesotaMinneapolisUSA
  11. 11.University of IllinoisChicagoUSA

Personalised recommendations