Advertisement

Endoluminal high-resolution MR imaging protocol for colon walls analysis in a mouse model of colitis

  • Hugo DorezEmail author
  • Raphaël Sablong
  • Laurence Canaple
  • Hervé Saint-Jalmes
  • Sophie Gaillard
  • Driffa Moussata
  • Olivier Beuf
Research Article

Abstract

Objective

An endoluminal magnetic resonance (MR) imaging protocol including the design of an endoluminal coil (EC) was defined for high-spatial-resolution MR imaging of mice gastrointestinal walls at 4.7 T.

Materials and methods

A receive-only radiofrequency single-loop coil was developed for mice colon wall imaging. Combined with a specific protocol, the prototype was first characterized in vitro on phantoms and on vegetables. Signal-to-noise ratio (SNR) profiles were compared with a quadrature volume birdcage coil (QVBC). Endoluminal MR imaging protocol combined with the EC was assessed in vivo on mice.

Results

The SNR measured close to the coil is significantly higher (10 times and up to 3 mm of the EC center) than the SNR measured with the QVBC. The gain in SNR can be used to reduce the in-plane pixel size up to 39 × 39 µm2 (234 µm slice thickness) without time penalty. The different colon wall layers can only be distinguished on images acquired with the EC.

Conclusion

Dedicated EC provides suitable images for the assessment of mice colon wall layers. This proof of concept provides gains in spatial resolution and leads to adequate protocols for the assessment of human colorectal cancer, and can now be used as a new imaging tool for a better understanding of the pathology.

Keywords

Colorectal neoplasms Magnetic resonance imaging Colitis Instrumentation 

Notes

Acknowledgments

This work was supported by the LABEX PRIMES (ANR-11-LABX-0063) of “Université de Lyon”, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving animals

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Ethical standards

This study was approved by the institutional review board of the Université Claude Bernard Lyon 1 (reference number: DR2014-62-v1) and complied with ethics committee standards.

References

  1. 1.
    Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol 13:790–801CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90CrossRefPubMedGoogle Scholar
  3. 3.
    Siegel R, DeSantis C, Jemal A (2014) Colorectal cancer statistics, 2014. CA Cancer J Clin 64:104–117CrossRefPubMedGoogle Scholar
  4. 4.
    O’Connell JB, Maggard MA, Ko CY (2004) Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 96:1420–1425CrossRefPubMedGoogle Scholar
  5. 5.
    Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41:185–192CrossRefPubMedGoogle Scholar
  6. 6.
    Bisognin A, Pizzini S, Perilli L, Esposito G, Mocellin S, Nitti D, Zanovello P, Bortoluzzi S, Mandruzzato S (2014) An integrative framework identifies alternative splicing events in colorectal cancer development. Mol Oncol 8:129–141CrossRefPubMedGoogle Scholar
  7. 7.
    Fearon ER (2011) Molecular genetics of colorectal cancer. Annu Rev Pathol Mech Dis 6:479–507CrossRefGoogle Scholar
  8. 8.
    Vanagunas A, Lin DE, Stryker SJ (2004) Accuracy of endoscopic ultrasound for restaging rectal cancer following neoadjuvant chemoradiation therapy. Am J Gastroenterol 99:109–112CrossRefPubMedGoogle Scholar
  9. 9.
    Puli SR, Reddy JBK, Bechtold ML, Choudhary A, Antillon MR, Brugge WR (2009) Accuracy of endoscopic ultrasound to diagnose nodal invasion by rectal cancers: a meta-analysis and systematic review. Ann Surg Oncol 16:1255–1265CrossRefPubMedGoogle Scholar
  10. 10.
    Puli SR, Bechtold ML, Reddy JBK, Choudhary A, Antillon MR (2010) Can endoscopic ultrasound predict early rectal cancers that can be resected endoscopically? A meta-analysis and systematic review. Dig Dis Sci 55:1221–1229CrossRefPubMedGoogle Scholar
  11. 11.
    Puli SR, Bechtold ML, Reddy JBK, Choudhary A, Antillon MR, Brugge WR (2009) How good is endoscopic ultrasound in differentiating various T stages of rectal cancer? Meta-analysis and systematic review. Ann Surg Oncol 16:254–265CrossRefPubMedGoogle Scholar
  12. 12.
    Vander Noot MR, Eloubeidi MA, Chen VK, Eltoum I, Jhala D, Jhala N, Syed S, Chhieng DC (2004) Diagnosis of gastrointestinal tract lesions by endoscopic ultrasound-guided fine-needle aspiration biopsy. Cancer 102:157–163CrossRefPubMedGoogle Scholar
  13. 13.
    Hurlstone DP, Brown S, Cross SS, Shorthouse AJ, Sanders DS (2005) Endoscopic ultrasound miniprobe staging of colorectal cancer: can management be modified? Endoscopy 37:710–714CrossRefPubMedGoogle Scholar
  14. 14.
    Hurlstone DP, Brown S, Cross SS, Shorthouse AJ, Sanders DS (2005) High magnification chromoscopic colonoscopy or high frequency 20 MHz mini probe endoscopic ultrasound staging for early colorectal neoplasia: a comparative prospective analysis. Gut 54:1585–1589CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Pilleul F, Beuf O, Armenean M, Scoazec JY, Valette PJ, Saint-Jalmes H (2004) In vitro rat colonic wall imaging with MR endoluminal coil: feasibility study and histologic correlations. Acad Radiol 11:795–801PubMedGoogle Scholar
  16. 16.
    Beuf O, Pilleul F, Armenean M, Hadour G, Saint-Jalmes H (2004) In vivo colon wall imaging using endoluminal coils: feasibility study on rabbits. J Magn Reson Imaging 20:90–96CrossRefPubMedGoogle Scholar
  17. 17.
    Maldjian C, Smith R, Kilger A, Schnall M, Ginsberg G, Kochman M (2000) Endorectal surface coil MR imaging as a staging technique for rectal carcinoma: a comparison study to rectal endosonography. Abdom Imaging 25:75–80CrossRefPubMedGoogle Scholar
  18. 18.
    Syms R, Young I, Wadsworth C, Taylor-Robinson S, Rea M (2013) Magnetic resonance imaging duodenoscope. IEEE Trans Biomed Eng 60:3458–3467CrossRefPubMedGoogle Scholar
  19. 19.
    Pilleul F, Beuf O, Godefroy C, Scoazec J-Y, Armenean M, Armenean C, Perrin E, Valette P-J, Jalmes HS (2005) High-resolution MR imaging appearance of colonic tissue in rabbits using an endoluminal coil. Magn Reson Mater Phy 18:238–244CrossRefGoogle Scholar
  20. 20.
    Klessen C, Rogalla P, Taupitz M (2007) Local staging of rectal cancer: the current role of MRI. Eur Radiol 17:379–389CrossRefPubMedGoogle Scholar
  21. 21.
    Beaumont C, Pandey T, Gaines Fricke R, Laryea J, Jambhekar K (2013) MR evaluation of rectal cancer: current concepts. Curr Probl Diagn Radiol 42:99–112CrossRefPubMedGoogle Scholar
  22. 22.
    Armenean M, Beuf O, Pilleul F, Saint-Jalmes H (2001) Endoluminal loop radiofrequency coils for gastrointestinal wall imaging. In: Proceedings of the 23rd annual international conference of the IEEE engineering in medicine and biology society, pp 3052–3055Google Scholar
  23. 23.
    Armenean M, Beuf O, Pilleul F, Saint-Jalmes H (2004) Optimization of endoluminal loop radiofrequency coils for gastrointestinal wall MR imaging. IEEE Sens J 4:57–64CrossRefGoogle Scholar
  24. 24.
    Ladd ME, Quick HH (2000) Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med 43:615–619CrossRefPubMedGoogle Scholar
  25. 25.
    Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J (2001) On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 13:105–114CrossRefPubMedGoogle Scholar
  26. 26.
    Shellock FG (2000) Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Imaging 12:30–36CrossRefPubMedGoogle Scholar
  27. 27.
    Gauss R, Wong E (2009) RF traps for radio frequency coils used in MRI. US Patent No. 7,622,928Google Scholar
  28. 28.
    Tanaka T, Kohno H, Suzuki R, Yamada Y, Sugie S, Mori H (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94:965–973CrossRefPubMedGoogle Scholar
  29. 29.
    Aychek T, Vandoorne K, Brenner O, Jung S, Neeman M (2011) Quantitative analysis of intravenously administered contrast media reveals changes in vascular barrier functions in a murine colitis model. Magn Reson Med 66:235–243CrossRefPubMedGoogle Scholar
  30. 30.
    Atalar E, Bottomley PA, Ocali O, Correia LC, Kelemen MD, Lima JA, Zerhouni EA (1996) High resolution intravascular MRI and MRS by using a catheter receiver coil. Magn Reson Med 36:596–605CrossRefPubMedGoogle Scholar
  31. 31.
    Verret JM, Pilleul F, Rabrait C, Beuf O (2012) RF heating reduction associated to an MR endoluminal coil at 3T. In: ESMRMB 2012 29th annual scientific meeting, Toulouse, p 143Google Scholar
  32. 32.
    Komárek V (2012) Gross anatomy. In: Hedrich HJ (ed) Laboratory mouse, chap 2.2, 2nd edn. Academic Press, Boston, pp 145–159Google Scholar
  33. 33.
    Doty FD, Entzminger G, Kulkarni J, Pamarthy K, Staab JP (2007) Radio frequency coil technology for small-animal MRI. NMR Biomed 20:304–325CrossRefPubMedGoogle Scholar
  34. 34.
    Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24:71–85Google Scholar
  35. 35.
    Kajfez D, Hwan EJ (1984) Q-factor measurement with network analyzer. IEEE Trans Microw Theory Tech 32:666–670CrossRefGoogle Scholar
  36. 36.
    Ginzton EL (1958) Microwave Q measurements in the presence of coupling losses. IRE Trans Microw Theory Tech 6:383–389CrossRefGoogle Scholar
  37. 37.
    Cheng H-LM, Wright GA (2006) Rapid high-resolution T1 mapping by variable flip angles: accurate and precise measurements in the presence of radiofrequency field inhomogeneity. Magn Reson Med 55:566–574CrossRefPubMedGoogle Scholar
  38. 38.
    Hashemi RH, Bradley WG, Lisanti CJ (2012) MRI: the basics. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  39. 39.
    Rasband WS et al (1997) ImageJ. US National Institutes of Health, BethesdaGoogle Scholar
  40. 40.
    Gibbs P, Tozer DJ, Liney GP, Turnbull LW (2001) Comparison of quantitative T2 mapping and diffusion-weighted imaging in the normal and pathologic prostate. Magn Reson Med 46:1054–1058CrossRefPubMedGoogle Scholar
  41. 41.
    Schnall MD, Lenkinski RE, Pollack HM, Imai Y, Kressel HY (1989) Prostate: MR imaging with an endorectal surface coil. Radiology 172:570–574CrossRefPubMedGoogle Scholar
  42. 42.
    Stoker J, Rociu E (1999) Endoluminal MR imaging of diseases of the anus and rectum. Semin Ultrasound CT MRI 20:47–55CrossRefGoogle Scholar
  43. 43.
    Sathyanarayana S, Bottomley PA (2009) MRI endoscopy using intrinsically localized probes. Med Phys 36:908–919CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zagoria RJ, Schlarb CA, Ott DJ, Bechtold RE, Wolfman NT, Scharling ES, Chen MYM, Loggie BW (1997) Assessment of rectal tumor infiltration utilizing endorectal MR imaging and comparison with endoscopic rectal sonography. J Surg Oncol 64:312–317CrossRefPubMedGoogle Scholar
  45. 45.
    D’Amico AV, Schnall M, Whittington R, Malkowicz SB, Schultz D, Tomaszewski JE, Wein A (1998) Endorectal coil magnetic resonance imaging identifies locally advanced prostate cancer in select patients with clinically localized disease. Urology 51:449–454CrossRefPubMedGoogle Scholar
  46. 46.
    Verret JM, Rabrait C, Pilleul F, Beuf O (2012) Réalisation de capteurs endoluminaux en Imagerie de Résonance Magnétique à 3T: performances et sécurité. In: Proc. 1st Meet. Société Fr. Résonance Magnétique En Biol. Médecine. Marseille, p 1Google Scholar
  47. 47.
    Ayde R, Gaborit G, Jarrige P, Duvillaret L, Sablong R, Perrier A, Beuf O (2013) Potentialities of an electro-optic crystal fed by nuclear magnetic resonant coil for remote and low-invasive magnetic field characterization. IEEE Sens J 13:1274–1280CrossRefGoogle Scholar
  48. 48.
    Fandrey S, Weiss S, Muller J (2008) Development of an active intravascular MR device with an optical transmission system. IEEE Trans Med Imaging 27:1723–1727CrossRefPubMedGoogle Scholar
  49. 49.
    Syms R, Solymar L, Young IR (2010) Periodic analysis of MR-safe transmission lines. IEEE J Sel Top Quantum Electron 16:433–440CrossRefGoogle Scholar
  50. 50.
    Thörmer G, Reiss-Zimmermann M, Otto J, Hoffmann K-T, Moche M, Garnov N, Kahn T, Busse H (2013) Novel technique for MR elastography of the prostate using a modified standard endorectal coil as actuator. J Magn Reson Imaging 37:1480–1485CrossRefPubMedGoogle Scholar
  51. 51.
    Larsson AE, Melgar S, Rehnström E, Michaëlsson E, Svensson L, Hockings P, Olsson LE (2006) Magnetic resonance imaging of experimental mouse colitis and association with inflammatory activity. Inflamm Bowel Dis 12:478–485CrossRefPubMedGoogle Scholar
  52. 52.
    Yeung CJ, Susil RC, Atalar E (2002) RF safety of wires in interventional MRI: using a safety index. Magn Reson Med 47:187–193CrossRefPubMedGoogle Scholar
  53. 53.
    Konings MK, Bartels LW, Smits HFM, Bakker CJG (2000) Heating around intravascular guidewires by resonating RF waves. J Magn Reson Imaging 12:79–85CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2016

Authors and Affiliations

  1. 1.Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-LyonUniversité Lyon 1VilleurbanneFrance
  2. 2.Institut de Génomique Fonctionnelle de Lyon, Université de Lyon 1, UMR 5242 CNRSEcole Normale Supérieure de LyonLyonFrance
  3. 3.LTSI, INSERM U642Université Rennes 1RennesFrance
  4. 4.CRLCCCentre Eugène MarquisRennesFrance
  5. 5.Hôpital Régional Universitaire de Tours-Service Hépato-GastroentérologieToursFrance

Personalised recommendations