Advertisement

Phase-corrected bipolar gradients in multi-echo gradient-echo sequences for quantitative susceptibility mapping

  • Jianqi LiEmail author
  • Shixin Chang
  • Tian Liu
  • Hongwei Jiang
  • Fang Dong
  • Mengchao Pei
  • Qianfeng Wang
  • Yi Wang
Research Article

Abstract

Objective

Large echo spacing of unipolar readout gradients in current multi-echo gradient-echo (GRE) sequences for mapping fields in quantitative susceptibility mapping (QSM) can be reduced using bipolar readout gradients thereby improving acquisition efficiency.

Materials and methods

Phase discrepancies between odd and even echoes in the bipolar readout gradients caused by non-ideal gradient behaviors were measured, modeled as polynomials in space and corrected for accordingly in field mapping. The bipolar approach for multi-echo GRE field mapping was compared with the unipolar approach for QSM.

Results

The odd–even-echo phase discrepancies were approximately constant along the phase encoding direction and linear along the readout and slice-selection directions. A simple linear phase correction in all three spatial directions was shown to enable accurate QSM of the human brain using a bipolar multi-echo GRE sequence. Bipolar multi-echo acquisition provides QSM in good quantitative agreement with unipolar acquisition while also reducing noise.

Conclusion

With a linear phase correction between odd–even echoes, bipolar readout gradients can be used in multi-echo GRE sequences for QSM.

Keywords

Quantitative susceptibility mapping Bipolar gradient Phase correction 

Notes

Acknowledgments

This study was supported in part by grants from The National Natural Science Foundation of China (81271533) and by NIH R01EB013443, R01NS073270, and R43EB015293.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

The study was approved by the internal institutional review board that oversees compliance with the Declaration of Helsinki. Written informed consent was obtained from all subjects prior to imaging.

References

  1. 1.
    de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y (2010) Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMedGoogle Scholar
  2. 2.
    Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y (2009) Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 61(1):196–204PubMedCrossRefGoogle Scholar
  3. 3.
    Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH (2009) Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med 62(6):1510–1522PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Schweser F, Deistung A, Lehr BW, Reichenbach JR (2010) Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 37(10):5165–5178PubMedCrossRefGoogle Scholar
  5. 5.
    Wharton S, Bowtell R (2010) Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods. Neuroimage 53(2):515–525PubMedCrossRefGoogle Scholar
  6. 6.
    Haacke EM, Tang J, Neelavalli J, Cheng YC (2010) Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 32(3):663–676PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Li W, Wu B, Liu C (2011) Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage 55(4):1645–1656PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E (2012) MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage 59(3):2625–2635PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Chen Z, Calhoun V (2012) Computed inverse resonance imaging for magnetic susceptibility map reconstruction. J Comput Assist Tomogr 36(2):265–274PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Schweser F, Deistung A, Lehr BW, Reichenbach JR (2011) Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage 54(4):2789–2807PubMedCrossRefGoogle Scholar
  11. 11.
    Langkammer C, Schweser F, Krebs N, Deistung A, Goessler W, Scheurer E, Sommer K, Reishofer G, Yen K, Fazekas F, Ropele S, Reichenbach JR (2012) Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. Neuroimage 62(3):1593–1599PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Zheng W, Nichol H, Liu S, Cheng YC, Haacke EM (2013) Measuring iron in the brain using quantitative susceptibility mapping and X-ray fluorescence imaging. Neuroimage 78:68–74PubMedCrossRefGoogle Scholar
  13. 13.
    Klohs J, Deistung A, Schweser F, Grandjean J, Dominietto M, Waschkies C, Nitsch RM, Knuesel I, Reichenbach JR, Rudin M (2011) Detection of cerebral microbleeds with quantitative susceptibility mapping in the ArcAbeta mouse model of cerebral amyloidosis. J Cereb Blood Flow Metab 31(12):2282–2292PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Liu T, Surapaneni K, Lou M, Cheng L, Spincemaille P, Wang Y (2012) Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping. Radiology 262(1):269–278PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schafer A, Peters AM, Bowtell RW, Auer DP, Gowland PA, Bajaj NP (2011) High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson’s disease. J Magn Reson Imaging 35(1):48–55PubMedCrossRefGoogle Scholar
  16. 16.
    Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S, Fazekas F, Wang Y, Ropele S (2013) Quantitative susceptibility mapping in multiple sclerosis. Radiology 267(2):551–559PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Yao B, Li TQ, Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44(4):1259–1266PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Fan AP, Bilgic B, Gagnon L, Witzel T, Bhat H, Rosen BR, Adalsteinsson E (2014) Quantitative oxygenation venography from MRI phase. Magn Reson Med 72(1):149–159PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Xu B, Liu T, Spincemaille P, Prince M, Wang Y (2014) Flow compensated quantitative susceptibility mapping for venous oxygenation imaging. Magn Reson Med 72(2):438–445PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Liu C (2010) Susceptibility tensor imaging. Magn Reson Med 63(6):1471–1477PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Liu C, Li W, Wu B, Jiang Y, Johnson GA (2012) 3D fiber tractography with susceptibility tensor imaging. Neuroimage 59(2):1290–1298PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Deistung A, Schafer A, Schweser F, Biedermann U, Gullmar D, Trampel R, Turner R, Reichenbach JR (2013) High-resolution MR imaging of the human brainstem in vivo at 7 Tesla. Front Hum Neurosci 7:710PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Schafer A, Forstmann BU, Neumann J, Wharton S, Mietke A, Bowtell R, Turner R (2012) Direct visualization of the subthalamic nucleus and its iron distribution using high-resolution susceptibility mapping. Hum Brain Mapp 33(12):2831–2842PubMedCrossRefGoogle Scholar
  24. 24.
    Liu T, Eskreis-Winkler S, Schweitzer AD, Chen W, Kaplitt MG, Tsiouris AJ, Wang Y (2013) Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology 269(1):216–223PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Deistung A, Schafer A, Schweser F, Biedermann U, Turner R, Reichenbach JR (2013) Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage 65:299–314PubMedCrossRefGoogle Scholar
  26. 26.
    de Rochefort L, Nguyen T, Brown R, Spincemaille P, Choi G, Weinsaft J, Prince MR, Wang Y (2008) In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI. Med Phys 35(12):5328–5339PubMedCrossRefGoogle Scholar
  27. 27.
    Liu T, Spincemaille P, de Rochefort L, Wong R, Prince M, Wang Y (2010) Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields. Magn Reson Imaging 28(9):1383–1389PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Duyn J (2013) MR susceptibility imaging. J Magn Reson 229:198–207PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Reichenbach JR (2012) The future of susceptibility contrast for assessment of anatomy and function. Neuroimage 62(2):1311–1315PubMedCrossRefGoogle Scholar
  30. 30.
    Wang Y, Liu T (2014) Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. doi: 10.1002/mrm.25358 Google Scholar
  31. 31.
    Denk C, Rauscher A (2010) Susceptibility weighted imaging with multiple echoes. J Magn Reson Imaging 31(1):185–191PubMedCrossRefGoogle Scholar
  32. 32.
    Gilbert G, Savard G, Bard C, Beaudoin G (2012) Quantitative comparison between a multi-echo sequence and a single-echo sequence for susceptibility-weighted phase imaging. Magn Reson Imaging 30(5):722–730PubMedCrossRefGoogle Scholar
  33. 33.
    Liu J, Liu T, de Rochefort L, Ledoux J, Khalidov I, Chen W, Tsiouris AJ, Wisnieff C, Spincemaille P, Prince MR, Wang Y (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. Neuroimage 59(3):2560–2568PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Feng W, Neelavalli J, Haacke EM (2013) Catalytic multi-echo phase unwrapping scheme (CAMPUS) in multi-echo gradient echo imaging: removing phase wraps on a voxel-by-voxel basis. Magn Reson Med 70(1):117–126PubMedCrossRefGoogle Scholar
  35. 35.
    Lu W, Yu H, Shimakawa A, Alley M, Reeder SB, Hargreaves BA (2008) Water-fat separation with bipolar multi-echo sequences. Magn Reson Med 60(1):198–209PubMedCrossRefGoogle Scholar
  36. 36.
    Peterson P, Mansson S (2014) Fat quantification using multi-echo sequences with bipolar gradients: investigation of accuracy and noise performance. Magn Reson Med 71(1):219–229PubMedCrossRefGoogle Scholar
  37. 37.
    Yeo DT, Chenevert TL, Fessler JA, Kim B (2007) Zero and first-order phase shift correction for field map estimation with dual-echo GRE using bipolar gradients. Magn Reson Imaging 25(9):1263–1271PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Yu H, Shimakawa A, McKenzie CA, Lu W, Reeder SB, Hinks RS, Brittain JH (2010) Phase and amplitude correction for multi-echo water-fat separation with bipolar acquisitions. J Magn Reson Imaging 31(5):1264–1271PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    National Electrical Manufacturers Association (2008) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication, Rosslyn, p 5Google Scholar
  40. 40.
    Kressler B, de Rochefort L, Liu T, Spincemaille P, Jiang Q, Wang Y (2010) Nonlinear regularization for per voxel estimation of magnetic susceptibility distributions from MRI field maps. IEEE Trans Med Imaging 29(2):273–281PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Cusack R, Papadakis N (2002) New robust 3-D phase unwrapping algorithms: application to magnetic field mapping and undistorting echoplanar images. Neuroimage 16(3 Pt 1):754–764PubMedCrossRefGoogle Scholar
  42. 42.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155PubMedCrossRefGoogle Scholar
  43. 43.
    Liu T, Khalidov I, de Rochefort L, Spincemaille P, Liu J, Tsiouris AJ, Wang Y (2011) A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed 24(9):1129–1136PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y (2011) Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med 66(3):777–783PubMedCrossRefGoogle Scholar
  45. 45.
    Liu T, Xu W, Spincemaille P, Avestimehr A, Wang Y (2012) Accuracy of the morphology enabled dipole inversion (MEDI) algorithm for quantitative susceptibility mapping in MRI. IEEE Trans Med Imaging 31(3):816–824Google Scholar
  46. 46.
    Ericsson A, Weis J, Hemmingsson A, Wikstrom M, Sperber GO (1995) Measurements of magnetic field variations in the human brain using a 3D-FT multiple gradient echo technique. Magn Reson Med 33(2):171–177PubMedCrossRefGoogle Scholar
  47. 47.
    Eggers H, Brendel B, Duijndam A, Herigault G (2011) Dual-echo Dixon imaging with flexible choice of echo times. Magn Reson Med 65(1):96–107PubMedCrossRefGoogle Scholar
  48. 48.
    Dimov AV, Liu T, Spincemaille P, Ecanow JS, Tan H, Edelman RR, Wang Y (2014) Joint estimation of chemical shift and quantitative susceptibility mapping (chemical QSM). Magn Reson Med. doi: 10.1002/mrm.25328 PubMedGoogle Scholar
  49. 49.
    Sharma SD, Hernando D, Horng DE, Reeder SB (2014) Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med. doi: 10.1002/mrm.25448 PubMedCentralGoogle Scholar

Copyright information

© ESMRMB 2014

Authors and Affiliations

  • Jianqi Li
    • 1
    Email author
  • Shixin Chang
    • 2
  • Tian Liu
    • 3
  • Hongwei Jiang
    • 1
  • Fang Dong
    • 1
  • Mengchao Pei
    • 1
  • Qianfeng Wang
    • 1
  • Yi Wang
    • 1
    • 4
    • 5
    • 6
  1. 1.Shanghai Key Laboratory of Magnetic Resonance and Department of PhysicsEast China Normal UniversityShanghaiChina
  2. 2.Department of Radiology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
  3. 3.Medimagemetric LLCNew YorkUSA
  4. 4.Department of RadiologyWeill Medical College of Cornell UniversityNew YorkUSA
  5. 5.Department of Biomedical EngineeringCornell UniversityIthacaUSA
  6. 6.Department of Biomedical EngineeringKyung Hee UniversitySeoulKorea

Personalised recommendations