Advertisement

Free breathing 1H MRI of the human lung with an improved radial turbo spin-echo

  • Michael Völker
  • Philipp Ehses
  • Stefan Weick
  • Felix Arno Breuer
  • Martin Blaimer
  • Christian Hintze
  • Jürgen Biederer
  • Peter Michael Jakob
Research Article

Abstract

Objective

To optimize a radial turbo spin-echo sequence for motion-robust morphological lung magnetic resonance imaging (MRI) in free respiration.

Materials and methods

A versatile multi-shot radial turbo spin-echo (rTSE) sequence is presented, using a modified golden ratio-based reordering designed to prevent coherent streaking due to data inconsistencies from physiological motion and the decaying signal. The point spread function for a moving object was simulated using a model for joint respiratory and cardiac motion with a concomitant T2 signal decay and with rTSE acquisition using four different reordering techniques. The reordering strategies were compared in vivo using healthy volunteers and the sequence was tested for feasibility in two patients with lung cancer and pneumonia.

Results

Simulations and in vivo measurements showed very weak artifacts, aside from motion blur, using the proposed reordering. Due to the opportunity for longer scan times in free respiration, a high signal-to-noise ratio (SNR) was achieved, facilitating identification of the disease as compared to standard half-Fourier-acquisition single-shot turbo spin-echo (HASTE) scans. Additionally, post-processing allowed modifying the T2 contrast retrospectively, further improving the diagnostic fidelity.

Conclusion

The proposed radial TSE sequence allowed for high-resolution imaging with limited obscuring artifacts. The radial k-space traversal allowed for versatile post-processing that may help to improve the diagnosis of subtle diseases.

Keywords

Lung Magnetic resonance imaging Radial sampling Turbo spin-echo 

Notes

Acknowledgments

The authors wish to acknowledge funding from the German Research Foundation (DFG), Grant numbers DFG JA 827/8-1 and DFG JA 827/8-2.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All human studies were approved by the ethics committee at the medical facility of Heidelberg University and written informed consent was obtained from all subjects. All studies have, therefore, been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and amendments.

References

  1. 1.
    Mugler JP, Driehuys B, Brookeman JR, Cates GD, Berr SS, Bryant RG, Daniel TM, De Lange EE, Downs JH, Erickson CJ, Happer W, Hinton DP, Kassel NF, Maier T, Phillips CD, Saam BT, Sauer KL, Wagshul ME (1997) MR imaging and spectroscopy using hyperpolarized 129Xe gas: preliminary human results. Magn Reson Med 37(6):809–815CrossRefPubMedGoogle Scholar
  2. 2.
    Kauczor HU, Surkau R, Roberts T (1998) MRI using hyperpolarized noble gases. Eur Radiol 8:820–827CrossRefPubMedGoogle Scholar
  3. 3.
    Kaushik SS, Cleveland ZI, Cofer GP, Metz G, Beaver D, Nouls J, Kraft M, Auffermann W, Wolber J, McAdams HP, Driehuys B (2011) Diffusion-weighted hyperpolarized 129Xe MRI in healthy volunteers and subjects with chronic obstructive pulmonary disease. Magn Reson Med 65(4):1154–1165CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Edelman RR, Hatabu H, Tadamura E, Li W, Prasad PV (1996) Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med 2(11):1236–1239CrossRefPubMedGoogle Scholar
  5. 5.
    Jakob PM, Wang T, Schultz G, Hebestreit H, Hebestreit A, Hahn D (2004) Assessment of human pulmonary function using oxygen-enhanced T1 imaging in patients with cystic fibrosis. Magn Reson Med 51(5):1009–1016CrossRefPubMedGoogle Scholar
  6. 6.
    Pracht ED, Arnold JFT, Wang T, Jakob PM (2005) Oxygen-enhanced proton imaging of the human lung using T2*. Magn Reson Med 53(5):1193–1196CrossRefPubMedGoogle Scholar
  7. 7.
    Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS (1994) Tissue specific perfusion imaging using arterial spin labeling. NMR Biomed 7(1–2):75–82CrossRefPubMedGoogle Scholar
  8. 8.
    Fischer A, Pracht ED, Arnold JF, Kotas M, Flentje M, Jakob PM (2008) Assessment of pulmonary perfusion in a single shot using SEEPAGE. J Magn Reson Imaging 27(1):63–70CrossRefPubMedGoogle Scholar
  9. 9.
    Hatabu H, Alsop DC, Listerud J, Bonnet M, Gefter WB (1999) T2* and proton density measurement of normal human lung parenchyma using submillisecond echo time gradient echo magnetic resonance imaging. Eur J Radiol 29(3):245–252CrossRefPubMedGoogle Scholar
  10. 10.
    Stadler A, Jakob PM, Griswold M, Barth M, Bankier AA (2005) T1 mapping of the entire lung parenchyma: influence of the respiratory phase in healthy individuals. J Magn Reson Imaging 21(6):759–764CrossRefPubMedGoogle Scholar
  11. 11.
    Hatabu H, Gaa J, Tadamura E, Edinburgh KJ, Stock KW, Garpestad E, Edelman RR (1999) MR imaging of pulmonary parenchyma with a half-Fourier single-shot turbo spin-echo (HASTE) sequence. Eur J Radiol 29(2):152–159CrossRefPubMedGoogle Scholar
  12. 12.
    Kiefer B, Grassner J, Hausman R (1994) Image acquisition in a second with half Fourier acquisition single shot turbo spin echo. J Magn Reson Imaging 4:86–87Google Scholar
  13. 13.
    Haacke E, Lindskogj E, Lin W (1969) A fast, iterative, partial-fourier technique capable of local phase recovery. J Magn Reson 92(1):126–145Google Scholar
  14. 14.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210CrossRefPubMedGoogle Scholar
  15. 15.
    Mayo JR, MacKay A, Müller NL (1992) MR imaging of the lungs: value of short TE spin-echo pulse sequences. Am J Roentgenol 159(5):951–956CrossRefGoogle Scholar
  16. 16.
    Bergin CJ, Pauly JM, Macovski A (1991) Lung parenchyma: projection reconstruction MR imaging. Radiology 179(3):777–781CrossRefPubMedGoogle Scholar
  17. 17.
    Robson MD, Gatehouse PD, Bydder M, Bydder GM (2003) Magnetic Resonance: an introduction to ultrashort TE (UTE) Imaging. J Comput Assist Tomogr 27(6):825–846CrossRefPubMedGoogle Scholar
  18. 18.
    Togao O, Tsuji R, Ohno Y, Dimitrov I, Takahashi M (2010) Ultrashort echo time (UTE) MRI of the lung: assessment of tissue density in the lung parenchyma. Magn Reson Med 64(5):1491–1498CrossRefPubMedGoogle Scholar
  19. 19.
    Strobel K, Hoerr V, Schmid F, Wachsmuth L, Löffler B, Faber C (2012) Early detection of lung inflammation: exploiting T1-effects of iron oxide particles using UTE MRI. Magn Reson Med 68(6):1924–1931CrossRefPubMedGoogle Scholar
  20. 20.
    Johnson KM, Fain SB, Schiebler ML, Nagle S (2012) Optimized 3D ultrashort echo time pulmonary MRI. Magn Reson Med 70:1241–1250CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Grodzki DM, Jakob PM, Heismann B (2012) Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA). Magn Reson Med 67(2):510–518CrossRefPubMedGoogle Scholar
  22. 22.
    Bauman G, Puderbach M, Deimling M, Jellus V, Chefd’hotel C, Dinkel J, Hintze C, Kauczor HU, Schad LR (2009) Non-contrast-enhanced perfusion and ventilation assessment of the human lung by means of fourier decomposition in proton MRI. Magn Reson Med 62(3):656–664CrossRefPubMedGoogle Scholar
  23. 23.
    Bieri O (2013) Ultra-fast steady state free precession and its application to in vivo 1H morphological and functional lung imaging at 1.5 tesla. Magn Reson Med 70(3):657–663CrossRefPubMedGoogle Scholar
  24. 24.
    Wild J, Marshall H, Bock M, Schad L, Jakob P, Puderbach M, Molinari F, Van Beek E, Biederer J (2012) MRI of the lung (1/3): methods. Insights Imaging 3(4):345–353CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Biederer J, Beer M, Hirsch W, Wild J, Fabel M, Puderbach M, Beek E (2012) MRI of the lung (2/3). Why … when … how? Insights Imaging 3(4):355–371CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Biederer J, Mirsadraee S, Beer M, Molinari F, Hintze C, Bauman G, Both M, Beek E, Wild J, Puderbach M (2012) MRI of the lung (3/3)—current applications and future perspectives. Insights Imaging 3(4):373–386CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Glover GH, Pauly JM (1992) Projection reconstruction techniques for reduction of motion effects in MRI. Magn Reson Med 28(2):275–289CrossRefPubMedGoogle Scholar
  28. 28.
    Rasche V, Holz D, Schepper W (1994) Radial turbo spin echo imaging. Magn Reson Med 32(5):629–638CrossRefPubMedGoogle Scholar
  29. 29.
    Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O (2007) An optimal radial profile order based on the golden ratio for time-resolved MRI. IEEE Trans Med Imaging 26(1):68–76CrossRefPubMedGoogle Scholar
  30. 30.
    Peters DC, Derbyshire JA, McVeigh ER (2003) Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med 50(1):1–6CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Speier P, Trautwein F (2006) Robust radial imaging with predetermined isotropic gradient delay correction. In: Proc ISMRM 2006 #2379. http://cds.ismrm.org/ismrm-2006/files/02379.pdf
  32. 32.
    Theilmann RJ, Gmitro AF, Altbach M, Trouard TP (2004) View-ordering in radial fast spin-echo imaging. Magn Reson Med 51(4):768–774CrossRefPubMedGoogle Scholar
  33. 33.
    Fessler JA (2007) On NUFFT-based gridding for non-Cartesian MRI. J Magn Reson 188(2):191–195CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Lujan AE, Larsen EW, Balter JM, Ten Haken RK (1999) A method for incorporating organ motion due to breathing into 3D dose calculations. Med Phys 26(5):715–720CrossRefPubMedGoogle Scholar
  35. 35.
    Song HL, Dougherty L (2000) k-Space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 44(6):825–832CrossRefPubMedGoogle Scholar
  36. 36.
    Altbach MI, Bilgin A, Li Z, Clarkson EW, Trouard TP, Gmitro AF (2005) Processing of radial fast spin-echo data for obtaining estimates from a single k-space data set. Magn Reson Med 54(3):549–559CrossRefPubMedGoogle Scholar
  37. 37.
    Crowe ME, Larson AC, Zhang Q, Carr J, White RD, Li D, Simonetti OP (2004) Automated rectilinear self-gated cardiac cine imaging. Magn Reson Med 52(4):782–788CrossRefPubMedGoogle Scholar
  38. 38.
    Larson AC, White RD, Laub G, McVeigh ER, Li D, Simonetti OP (2004) Self-gated cardiac cine MRI. Magn Reson Med 51(1):93–102CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Brau ACS, Brittain JH (2006) Generalized self-navigated motion detection technique: preliminary investigation in abdominal imaging. Magn Reson Med 55(2):263–270CrossRefPubMedGoogle Scholar
  40. 40.
    Weick S, Breuer FA, Ehses P, Völker M, Hintze C, Biederer J, Jakob PM (2013) DC-gated high resolution three-dimensional lung imaging during free-breathing. J Magn Reson Imaging 37(3):727–732CrossRefPubMedGoogle Scholar
  41. 41.
    Hennig J, Scheffler K (2000) Easy improvement of signal-to-noise in RARE-sequences with low refocusing flip angles. Magn Reson Med 44(3):983–985CrossRefPubMedGoogle Scholar
  42. 42.
    Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49(3):527–535Google Scholar

Copyright information

© ESMRMB 2014

Authors and Affiliations

  • Michael Völker
    • 1
  • Philipp Ehses
    • 2
  • Stefan Weick
    • 3
    • 4
  • Felix Arno Breuer
    • 1
  • Martin Blaimer
    • 1
  • Christian Hintze
    • 5
    • 7
  • Jürgen Biederer
    • 5
    • 6
    • 7
    • 8
  • Peter Michael Jakob
    • 1
    • 3
  1. 1.Research Center for Magnetic Resonance BavariaWürzburgGermany
  2. 2.Max-Planck-Institute for Biological CyberneticsUniversity of TübingenTübingenGermany
  3. 3.Department of Experimental Physics 5University of WürzburgWürzburgGermany
  4. 4.Department of Radiation OncologyUniversitätsklinikum WürzburgWürzburgGermany
  5. 5.German Cancer Research CenterHeidelbergGermany
  6. 6.Radiologie Darmstadt, Kreisklinik Gross GerauGross GerauGermany
  7. 7.Department of Diagnostic and Interventional RadiologyUniversitätsklinikum HeidelbergHeidelbergGermany
  8. 8.Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL)HeidelbergGermany

Personalised recommendations