High-resolution 3D whole-heart coronary MRA: a study on the combination of data acquisition in multiple breath-holds and 1D residual respiratory motion compensation

  • Christoph Forman
  • Davide Piccini
  • Robert Grimm
  • Jana Hutter
  • Joachim Hornegger
  • Michael O. Zenge
Research Article

Abstract

Object

To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE.

Materials and methods

The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness.

Results

Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases.

Conclusion

In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.

Keywords

Coronary magnetic resonance angiography Multiple breath-holds Respiratory motion compensation Compressed sensing 

References

  1. 1.
    Stuber M, Botnar RM, Danias PG, Sodickson DK, Kissinger KV, Van Cauteren M, De Becker J, Manning WJ (1999) Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. J Am Coll Cardiol 34:524–531PubMedCrossRefGoogle Scholar
  2. 2.
    Weber OM, Martin AJ, Higgins CB (2003) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50:1223–1228PubMedCrossRefGoogle Scholar
  3. 3.
    Hauser TH, Manning WJ (2008) The promise of whole-heart coronary MRI. Curr Cardiol Rep 10:46–50PubMedCrossRefGoogle Scholar
  4. 4.
    Danias PG, McConnell MV, Khasgiwala VC, Chuang ML, Edelman RR, Manning WJ (1997) Prospective navigator correction of image position for coronary MR angiography. Radiology 203:733–736PubMedCrossRefGoogle Scholar
  5. 5.
    Stuber M, Botnar RM, Danias PG, Kissinger KV, Manning WJ (1999) Submillimeter three-dimensional coronary MR angiography with real-time navigator correction: comparison of navigator locations. Radiology 212:579–587PubMedCrossRefGoogle Scholar
  6. 6.
    Stehning C, Börnert P, Nehrke K, Eggers H, Stuber M (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54:476–480PubMedCrossRefGoogle Scholar
  7. 7.
    Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO (2012) Respiratory self-navigation for whole-heart bright-blood coronary MRI: methods for robust isolation and automatic segmentation of the blood pool. Magn Reson Med 68:571–579PubMedCrossRefGoogle Scholar
  8. 8.
    Nehrke K, Börnert P, Manke P, Böck JC (2001) Free-breathing cardiac MR imaging: study of implications of respiratory motion—initial results. Radiology 220:810–815PubMedCrossRefGoogle Scholar
  9. 9.
    Manning WJ, Li W, Boyle NG, Edelman RR (1993) Fat-suppressed breath-hold magnetic resonance coronary angiography. Circulation 87:94–104PubMedCrossRefGoogle Scholar
  10. 10.
    Peters DC, Ennis DB, Rohatgi P, Syed MA, McVeigh ER, Arai AE (2004) 3D breath-held cardiac function with projection reconstruction in steady state free precession validated using 2D cine MRI. JMRI 20:411–416PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Niendorf T, Hardy CJ, Giaquinto RO, Gross P, Cline HE, Zhu Y, Kenwood G, Cohen S, Grant AK, Joshi S, Rofsky NM, Sodickson DK (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56:167–176PubMedCrossRefGoogle Scholar
  12. 12.
    Jahnke C, Paetsch I, Achenbach S, Schnackenburg B, Gebker R, Fleck E, Nagel E (2006) Coronary MR imaging: breath-hold capability and patterns, coronary artery rest periods, and β-blocker use. Radiology 239(1):71–78PubMedCrossRefGoogle Scholar
  13. 13.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRefGoogle Scholar
  14. 14.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  15. 15.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195PubMedCrossRefGoogle Scholar
  16. 16.
    Moghari MH, Akçakaya M, O’Connor A, Basha TA, Casanova M, Stanton D, Goepfert L, Kissinger KV, Goddu B, Chuang ML, Tarokh V, Manning WJ, Nezafat R (2011) Compressed-sensing motion compensation (CosMo): a joint prospective-retrospective respiratory navigator for coronary MRI. Magn Reson Med 66:1674–1681PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098PubMedCrossRefGoogle Scholar
  18. 18.
    Santos JM, Cunningham CH, Lustig M, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM (2006) Single breath-hold whole-heart MRA using variable-density spirals at 3T. Magn Reson Med 55:371–379PubMedCrossRefGoogle Scholar
  19. 19.
    Peters DC, Derbyshire JA, McVeigh ER (2003) Centering the projection reconstruction trajectory: reducing gradient delay errors. Magn Reson Med 50(1):1–6PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Block KT, Uecker M (2011) Simple method for adaptive gradient-delay compensation in radial MRI. In: Proceedings of the 19th scientific meeting. International Society for Magnetic Resonance in Medicine, Montreal, Canada, p 2816Google Scholar
  21. 21.
    Boubertakh R, Prieto C, Batchelor PG, Uribe S, Atkinson D, Eggers H, Sørensen TS, Hansen MS, Razavi RS, Schaeffter T (2009) Whole-heart imaging using undersampled radial phase encoding (RPE) and iterative sensitivity encoding (SENSE) reconstruction. Magn Reson Med 62:1331–1337Google Scholar
  22. 22.
    Jackson JI, Meyer CH, Nishimura DG, Macovski A (1991) Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imaging 10:473–478PubMedCrossRefGoogle Scholar
  23. 23.
    Doneva M, Eggers H, Börnert P(2012) CS-SENSE or denoised SENSE: the influence of irregular sampling in l1 regularized SENSE reconstruction. In: Proceedings of the 20th scientific meeting. International Society for Magnetic Resonance in Medicine, Melbourne, Australia, p 2240Google Scholar
  24. 24.
    Cheng JY, Uecker M, Alley MT, Vasanawala SS, Pauly JM, Lustig M (2013) Free-breathing pediatric imaging with nonrigid motion correction and parallel imaging. In: Proceedings of the 21th scientific meeting. International Society for Magnetic Resonance in Medicine, Salt Lake City, UT, USA, p 1506Google Scholar
  25. 25.
    Vogel H (1979) A better way to construct the sunflower head. Math Biosci 44:179–189CrossRefGoogle Scholar
  26. 26.
    Akçakaya M, Basha TA, Chan RH, Rayatzadeh H, Kissinger KV, Goddu B, Goepfert LA, Manning WJ, Nezafat R (2012) Accelerated contrast-enhanced whole-heart coronary MRI using low-dimensional-structure self-learning and thresholding. Magn Reson Med 67:1434–1443PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lustig M (2010) Improved pediatic MR imaging with compressed sensing. Radiology 256(2):607–616PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Piccini D, Littmann A, Nielles-Vallespin S, Zenge MO (2011) Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI. Magn Reson Med 66:1049–1056PubMedCrossRefGoogle Scholar
  29. 29.
    Wang Y, Riederer SJ, Ehman RL (1995) Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 33:713–719PubMedCrossRefGoogle Scholar
  30. 30.
    Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60:259–268CrossRefGoogle Scholar
  31. 31.
    Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput 35:773–782CrossRefGoogle Scholar
  32. 32.
    Li D, Carr JC, Shea SM, Zheng J, Deshpande VS, Wielopolski PA, Finn JP (2001) Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume-targeted breath-hold MR angiography. Radiology 219:270–277PubMedCrossRefGoogle Scholar
  33. 33.
    Henningsson M, Smink J, Razavi R, Botnar RM (2013) Prospective respiratory motion correction for coronary MR angiography using a 2D image navigator. Magn Reson Med 69:486–494PubMedCrossRefGoogle Scholar
  34. 34.
    Schmidt JFM, Buehrer M, Boesiger P, Kozerke S (2011) Nonrigid retrospective respiratory motion correction in whole-heart coronary MRA. Magn Reson Med 66:1541–1549PubMedCrossRefGoogle Scholar
  35. 35.
    Forman C, Piccini D, Hutter J, Grimm R, Hornegger J, Zenge MO (2012) Minimization of respiratory motion artifacts for whole-heart coronary MRI: a combination of self-navigation and weighted compressed sensing reconstruction. In: Proceedings of the 20th scientific meeting. International Society for Magnetic Resonance in Medicine, Melbourne, Australia, p 1160Google Scholar

Copyright information

© ESMRMB 2014

Authors and Affiliations

  • Christoph Forman
    • 1
    • 2
  • Davide Piccini
    • 3
    • 4
  • Robert Grimm
    • 1
  • Jana Hutter
    • 1
    • 2
  • Joachim Hornegger
    • 1
    • 2
  • Michael O. Zenge
    • 5
  1. 1.Pattern Recognition Lab, Department of Computer ScienceFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Advanced Clinical Imaging TechnologySiemens Healthcare H IM BM PILausanneSwitzerland
  4. 4.Department of RadiologyUniversity Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging (CIBM)LausanneSwitzerland
  5. 5.MR Product Innovation and Definition, Healthcare SectorSiemens AGErlangenGermany

Personalised recommendations