Improved short tau inversion recovery (iSTIR) for increased tumor conspicuity in the abdomen

  • Ananth J. Madhuranthakam
  • Karen S. Lee
  • Aya Yassin
  • Jean H. Brittain
  • Ivan Pedrosa
  • Neil M. Rofsky
  • David C. Alsop
Research Article
  • 148 Downloads

Abstract

Object

To develop an improved short tau inversion recovery (iSTIR) technique with simultaneous suppression of fat, blood vessels and fluid to increase tumor conspicuity in the abdomen for cancer screening.

Materials and methods

An adiabatic spectrally selective inversion pulse was used for fat suppression to overcome the reduced signal to noise ratio associated with chemically non-selective inversion pulse of STIR. A motion-sensitizing driven equilibrium was used for blood vessel suppression and a dual-echo single-shot fast spin echo acquisition was used for fluid suppression. The technique was optimized on four normal subjects and later tested on five patients referred for metastatic tumor evaluation.

Results

A velocity encoding of 2 cm/s achieved effective blood suppression even in small vessels. Subtraction of two images (one with 60 ms and the other with 280 ms echo time) acquired in the same echo train achieved excellent fluid suppression (>70 % reduction). Simultaneous suppression of fat, blood vessels and fluid improved the tumor conspicuity compared to corresponding fat-suppressed (STIR) image.

Conclusion

This technique generated two complementary images from a single scan: one that is equivalent to a STIR image and the other that qualitatively resembles a diffusion-weighted image and may have potential for magnetic resonance imaging cancer screening.

Keywords

T2 STIR Diffusion Screening Suppression 

References

  1. 1.
    Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, Bockisch A, Debatin JF, Freudenberg LS (2004) Accuracy of whole-body dual-modality fluorine-18-2-fluoro-2-deoxy-d-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 22(21):4357–4368PubMedCrossRefGoogle Scholar
  2. 2.
    Schoder H, Gonen M (2007) Screening for cancer with PET and PET/CT: potential and limitations. J Nucl Med 48(Suppl 1):4S–18SPubMedGoogle Scholar
  3. 3.
    Hall EJ, Brenner DJ (2008) Cancer risks from diagnostic radiology. Br J Radiol 81(965):362–378PubMedCrossRefGoogle Scholar
  4. 4.
    Horvath LJ, Burtness BA, McCarthy S, Johnson KM (1999) Total-body echo-planar MR imaging in the staging of breast cancer: comparison with conventional methods—early experience. Radiology 211(1):119–128PubMedCrossRefGoogle Scholar
  5. 5.
    Lauenstein TC, Semelka RC (2006) Emerging techniques: whole-body screening and staging with MRI. J Magn Reson Imaging 24(3):489–498PubMedCrossRefGoogle Scholar
  6. 6.
    Schmidt GP, Reiser MF, Baur-Melnyk A (2009) Whole-body MRI for the staging and follow-up of patients with metastasis. Eur J Radiol 70(3):393–400PubMedCrossRefGoogle Scholar
  7. 7.
    Walker R, Kessar P, Blanchard R, Dimasi M, Harper K, DeCarvalho V, Yucel EK, Patriquin L, Eustace S (2000) Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 11(4):343–350PubMedCrossRefGoogle Scholar
  8. 8.
    Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635PubMedCrossRefGoogle Scholar
  9. 9.
    Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125PubMedCentralPubMedGoogle Scholar
  10. 10.
    Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4):275–282PubMedGoogle Scholar
  11. 11.
    Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, Maeda N, Nakata S, Kuwabara M, Murakami T, Nakamura H (2007) Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci 6(3):147–155PubMedCrossRefGoogle Scholar
  12. 12.
    Komori T, Narabayashi I, Matsumura K, Matsuki M, Akagi H, Ogura Y, Aga F, Adachi I (2007) 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med 21(4):209–215PubMedCrossRefGoogle Scholar
  13. 13.
    Ohno Y, Koyama H, Onishi Y, Takenaka D, Nogami M, Yoshikawa T, Matsumoto S, Kotani Y, Sugimura K (2008) Non-small cell lung cancer: whole-body MR examination for M-stage assessment—utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology 248(2):643–654PubMedCrossRefGoogle Scholar
  14. 14.
    Ono K, Ochiai R, Yoshida T, Kitagawa M, Omagari J, Kobayashi H, Yamashita Y (2009) Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases. J Magn Reson Imaging 29(2):336–340PubMedCrossRefGoogle Scholar
  15. 15.
    Stecco A, Romano G, Negru M, Volpe D, Saponaro A, Costantino S, Sacchetti G, Inglese E, Alabiso O, Carriero A (2009) Whole-body diffusion-weighted magnetic resonance imaging in the staging of oncological patients: comparison with positron emission tomography computed tomography (PET-CT) in a pilot study. Radiol Med 114(1):1–17PubMedCrossRefGoogle Scholar
  16. 16.
    Schmidt GP, Paprottka P, Jakobs TF, Hoffmann RT, Baur-Melnyk A, Haug A, Notohamiprodjo M, Baur-Melnyk A, Nikolaou K, Reiser MF, Rist C (2012) FDG-PET-CT and whole-body MRI for triage in patients planned for radioembolisation therapy. Eur J Radiol 81(3):e269–e276PubMedCrossRefGoogle Scholar
  17. 17.
    Li W, Nissenbaum MA, Stehling MK, Goldmann A, Edelman RR (1993) Differentiation between hemangiomas and cysts of the liver with nonenhanced MR imaging: efficacy of T2 values at 1.5 T. J Magn Reson Imaging 3(5):800–802PubMedCrossRefGoogle Scholar
  18. 18.
    Hussain SM, De Becker J, Hop WC, Dwarkasing S, Wielopolski PA (2005) Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study. J Magn Reson Imaging 21(3):219–229PubMedCrossRefGoogle Scholar
  19. 19.
    Semelka RC, Kelekis NL, Thomasson D, Brown MA, Laub GA (1996) HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging 6(4):698–699PubMedCrossRefGoogle Scholar
  20. 20.
    Walter C, Heindel W, Kruessell M, Kugel H, Jung G, Gindele A (2001) Fast sequences with fat suppression in breath-hold mode: new standard in contrast-enhanced T1-weighted MR imaging of renal tumors? Eur Radiol 11(10):2092–2098PubMedCrossRefGoogle Scholar
  21. 21.
    Koktzoglou I, Kirpalani A, Carroll TJ, Li D, Carr JC (2007) Dark-blood MRI of the thoracic aorta with 3D diffusion-prepared steady-state free precession: initial clinical evaluation. AJR Am J Roentgenol 189(4):966–972PubMedCrossRefGoogle Scholar
  22. 22.
    Wang J, Yarnykh VL, Hatsukami T, Chu B, Balu N, Yuan C (2007) Improved suppression of plaque-mimicking artifacts in black-blood carotid atherosclerosis imaging using a multislice motion-sensitized driven-equilibrium (MSDE) turbo spin-echo (TSE) sequence. Magn Reson Med 58(5):973–981PubMedCrossRefGoogle Scholar
  23. 23.
    Essig M, Deimling M, Hawighorst H, Debus J, van Kaick G (2000) Assessment of cerebral gliomas by a new dark fluid sequence, high intensity REduction (HIRE): a preliminary study. J Magn Reson Imaging 11(5):506–517PubMedCrossRefGoogle Scholar
  24. 24.
    de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659PubMedCrossRefGoogle Scholar
  25. 25.
    Ohtomo K, Itai Y, Yoshikawa K, Kokubo T, Iio M (1988) Hepatocellular carcinoma and cavernous hemangioma: differentiation with MR imaging. Efficacy of T2 values at 0.35 and 1.5 T. Radiology 168(3):621–623PubMedGoogle Scholar
  26. 26.
    Cieszanowski A, Szeszkowski W, Golebiowski M, Bielecki DK, Grodzicki M, Pruszynski B (2002) Discrimination of benign from malignant hepatic lesions based on their T2-relaxation times calculated from moderately T2-weighted turbo SE sequence. Eur Radiol 12(9):2273–2279PubMedGoogle Scholar
  27. 27.
    Cittadini G, Santacroce E, Giasotto V, Rescinito G (2004) Focal liver lesions: characterization with quantitative analysis of T2 relaxation time in TSE sequence with double echo time. Radiol Med 107(3):166–173PubMedGoogle Scholar
  28. 28.
    Nezafat R, Stuber M, Ouwerkerk R, Gharib AM, Desai MY, Pettigrew RI (2006) B1-insensitive T2 preparation for improved coronary magnetic resonance angiography at 3 T. Magn Reson Med 55(4):858–864PubMedCrossRefGoogle Scholar
  29. 29.
    Mugler JP III, Horger W, Kiefer B (2009). Improved diagnostic utility of T2-weighted 3D-TSE liver imaging by suppression of vascular signals using a motion-sensitive preparation. In: Proceedings of the 17th scientific meeting, international society for magnetic resonance in medicine, Honolulu, p 2069Google Scholar
  30. 30.
    Wong EC, Guo J (2010) BIR-4 based B1 and B0 insensitive velocity selective pulse trains. In: Proceedings of the 18th scientific meeting, international society for magnetic resonance in medicine, Stockholm, p 2853Google Scholar
  31. 31.
    Madhuranthakam AJ, Wei JL, Brittain JH, Rofsky NM, Alsop DC (2009). Preserving signal contrast in multi-slice black blood fast spin echo. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 4532Google Scholar
  32. 32.
    Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11(3):423–429PubMedGoogle Scholar
  33. 33.
    Eiber M, Holzapfel K, Ganter C, Epple K, Metz S, Geinitz H, Kubler H, Gaa J, Rummeny EJ, Beer AJ (2011) Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging 33(5):1160–1170PubMedCrossRefGoogle Scholar
  34. 34.
    Fazekas F, Barkhof F, Filippi M, Grossman RI, Li DK, McDonald WI, McFarland HF, Paty DW, Simon JH, Wolinsky JS, Miller DH (1999) The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 53(3):448–456PubMedCrossRefGoogle Scholar

Copyright information

© ESMRMB 2013

Authors and Affiliations

  • Ananth J. Madhuranthakam
    • 1
    • 4
  • Karen S. Lee
    • 2
  • Aya Yassin
    • 2
    • 5
  • Jean H. Brittain
    • 3
  • Ivan Pedrosa
    • 2
    • 4
  • Neil M. Rofsky
    • 2
    • 4
  • David C. Alsop
    • 2
  1. 1.Applied Science LabGE HealthcareBostonUSA
  2. 2.Department of Radiology, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  3. 3.Applied Science LabGE HealthcareMadisonUSA
  4. 4.Department of Radiology and Advanced Imaging Research CenterUniversity of Texas Southwestern Medical CenterDallasUSA
  5. 5.Department of RadiologyAin Shams UniversityCairoEgypt

Personalised recommendations