Increasing spatial resolution of 3T MRI scanning improves reproducibility of carotid arterial wall dimension measurements

  • Diederik F. van Wijk
  • Aart C. Strang
  • Raphael Duivenvoorden
  • Dirk-Jan F. Enklaar
  • Rob J. van der Geest
  • John J. P. Kastelein
  • Eric de Groot
  • Erik S. G. Stroes
  • Aart J. Nederveen
Research Article

Abstract

Objective

To improve carotid 3T magnetic resonance imaging (MRI) dimension measurements in patients with overt atherosclerotic carotid artery disease.

Materials and methods

In 31 patients with advanced atherosclerotic carotid artery disease, two high resolution (0.25 × 0.25 mm2; HR) and two routinely used low resolution (0.50 × 0.50 mm2; LR) carotid 3T MRI scans were performed within 1 month. After manual delineation of carotid wall contours in a dedicated image analyses program in eight slices covering the atherosclerotic plaque, image reproducibility, as well as the within-reader and between-reader variability were determined.

Results

We found significantly higher intraclass correlation coefficients for total wall volume, mean wall area and mean wall thickness for the HR measurements (all p < 0.05). We found a significant lower signal-to-noise and contrast-to-noise ratio for the HR compared to the LR measurements. The carotid arterial wall dimension measurements of all parameters were significantly lower for the HR compared to the LR measurements. No significant differences were observed between the within-reader and between-reader reproducibility for HR versus LR measurements.

Conclusion

Increasing the in-plane resolution improves the reproducibility of 3T MRI carotid arterial wall dimension measurements. The use of HR imaging will contribute to a reduced sample size needed in intervention trials using MRI scanning of the carotid artery as surrogate marker for atherosclerosis progression.

Keywords

Carotid MRI Atherosclerosis Reproducibility Cardiovascular magnetic resonance imaging 

Supplementary material

10334_2013_407_MOESM1_ESM.doc (868 kb)
Supplementary material 1 (DOC 867 kb)
10334_2013_407_MOESM2_ESM.doc (3.7 mb)
Supplementary material 2 (DOC 3740 kb)
10334_2013_407_MOESM3_ESM.doc (51 kb)
Supplementary material 3 (DOC 51 kb)
10334_2013_407_MOESM4_ESM.doc (34 kb)
Supplementary material 4 (DOC 33 kb)

References

  1. 1.
    Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493):1267–1278PubMedCrossRefGoogle Scholar
  2. 2.
    Duivenvoorden R, de Groot E, Elsen BM, Lameris JS, van der Geest RJ, Stroes ES, Kastelein JJ, Nederveen AJ (2009) In vivo quantification of carotid artery wall dimensions: 3.0-Tesla MRI versus B-mode ultrasound imaging. Circ Cardiovasc Imaging 2(3):235–242PubMedCrossRefGoogle Scholar
  3. 3.
    Sankatsing RR, Wit FW, Vogel M, de Groot E, Brinkman K, Rockstroh JK, Kastelein JJ, Stroes ES, Reiss P (2009) Increased carotid intima-media thickness in HIV patients treated with protease inhibitors as compared to non-nucleoside reverse transcriptase inhibitors. Atherosclerosis 202(2):589–595PubMedCrossRefGoogle Scholar
  4. 4.
    Meuwese MC, de Groot E, Duivenvoorden R, Trip MD, Ose L, Maritz FJ, Basart DC, Kastelein JJ, Habib R, Davidson MH, Zwinderman AH, Schwocho LR, Stein EA (2009) ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA 301(11):1131–1139PubMedCrossRefGoogle Scholar
  5. 5.
    Kastelein JJ, Akdim F, Stroes ES, Zwinderman AH, Bots ML, Stalenhoef AF, Visseren FL, Sijbrands EJ, Trip MD, Stein EA, Gaudet D, Duivenvoorden R, Veltri EP, Marais AD, de Groot E (2008) Simvastatin with or without ezetimibe in familial hypercholesterolemia. N Engl J Med 358(14):1431–1443PubMedCrossRefGoogle Scholar
  6. 6.
    Alizadeh Dehnavi R, Doornbos J, Tamsma JT, Stuber M, Putter H, van der Geest RJ, Lamb HJ, de Roos A (2007) Assessment of the carotid artery by MRI at 3T: a study on reproducibility. J Magn Reson Imaging 25(5):1035–1043PubMedCrossRefGoogle Scholar
  7. 7.
    Li F, Yarnykh VL, Hatsukami TS, Chu B, Balu N, Wang J, Underhill HR, Zhao X, Smith R, Yuan C (2010) Scan-rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. J Magn Reson Imaging 31(1):168–176Google Scholar
  8. 8.
    Kang X, Polissar NL, Han C, Lin E, Yuan C (2000) Analysis of the measurement precision of arterial lumen and wall areas using high-resolution MRI. Magn Reson Med 44(6):968–972PubMedCrossRefGoogle Scholar
  9. 9.
    Vidal A, Bureau Y, Wade T, Spence JD, Rutt BK, Fenster A, Parraga G (2008) Scan-rescan and intra-observer variability of magnetic resonance imaging of carotid atherosclerosis at 1.5 T and 3.0 T. Phys Med Biol 53(23):6821–6835PubMedCrossRefGoogle Scholar
  10. 10.
    Airan-Javia SL, Wolf RL, Wolfe ML, Tadesse M, Mohler E, Reilly MP (2009) Atheroprotective lipoprotein effects of a niacin-simvastatin combination compared to low- and high-dose simvastatin monotherapy. Am Heart J 157(4):687.e1–687.e8Google Scholar
  11. 11.
    Lee JM, Robson MD, Yu LM, Shirodaria CC, Cunnington C, Kylintireas I, Digby JE, Bannister T, Handa A, Wiesmann F, Durrington PN, Channon KM, Neubauer S, Choudhury RP (2009) Effects of high-dose modified-release nicotinic acid on atherosclerosis and vascular function: a randomized, placebo-controlled, magnetic resonance imaging study. J Am Coll Cardiol 54(19):1787–1794PubMedCrossRefGoogle Scholar
  12. 12.
    Saam T, Raya JG, Cyran CC, Bochmann K, Meimarakis G, Dietrich O, Clevert DA, Frey U, Yuan C, Hatsukami TS, Werf A, Reiser MF, Nikolaou K (2009) High resolution carotid black-blood 3T MR with parallel imaging and dedicated 4-channel surface coils. J Cardiovasc Magn Reson 11:41PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Yarnykh VL, Terashima M, Hayes CE, Shimakawa A, Takaya N, Nguyen PK, Brittain JH, McConnell MV, Yuan C (2006) Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths. J Magn Reson Imaging 23(5):691–698PubMedCrossRefGoogle Scholar
  14. 14.
    Koktzoglou I, Chung YC, Mani V, Carroll TJ, Morasch MD, Mizsei G, Simonetti OP, Fayad ZA, Li D (2006) Multislice dark-blood carotid artery wall imaging: a 1.5 T and 3.0 T comparison. J Magn Reson Imaging 23(5):699–705PubMedCrossRefGoogle Scholar
  15. 15.
    Balu N, Yarnykh VL, Scholnick J, Chu B, Yuan C, Hayes C (2009) Improvements in carotid plaque imaging using a new eight-element phased array coil at 3T. J Magn Reson Imaging 30(5):1209–1214PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Keenan NG, Sheppard MN, Grasso A, Chan CF, Mukherjee RK, Boyle JJ, Gatehouse PD, Firmin DN, Pennell DJ (2010) Validation of carotid arterial wall volume measurement by cardiovascular magnetic resonance. J Magn Reson Imaging 31(4):935–941Google Scholar
  17. 17.
    Meissner OA, Rieger J, Rieber J, Klauss V, Siebert U, Tato F, Pfeifer KJ, Reiser M, Hoffmann U (2003) High-resolution MR imaging of human atherosclerotic femoral arteries in vivo: validation with intravascular ultrasound. J Vasc Interv Radiol 14(2 Pt 1):227–231PubMedCrossRefGoogle Scholar
  18. 18.
    de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230(3):652–659PubMedCrossRefGoogle Scholar
  19. 19.
    Bland JM, Altman DG (1995) Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346(8982):1085–1087PubMedCrossRefGoogle Scholar
  20. 20.
    Rosner B Fundamentals of biostatistics (2010) 7th edn. Brooks/Cole, Cengage Learning, BostonGoogle Scholar
  21. 21.
    Saam T, Kerwin WS, Chu B, Cai J, Kampschulte A, Hatsukami TS, Zhao XQ, Polissar NL, Neradilek B, Yarnykh VL, Flemming K, Huston J III, Insull W Jr, Morrisett JD, Rand SD, DeMarco KJ, Yuan C (2005) Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis. J Cardiovasc Magn Reson 7(5):799–808PubMedCrossRefGoogle Scholar
  22. 22.
    Syed MA, Oshinski JN, Kitchen C, Ali A, Charnigo RJ, Quyyumi AA (2009) Variability of carotid artery measurements on 3-Tesla MRI and its impact on sample size calculation for clinical research. Int J Cardiovasc Imaging 25(6):581–589PubMedCrossRefGoogle Scholar
  23. 23.
    Kroner ES, Westenberg JJ, van der Geest RJ, Brouwer NJ, Doornbos J, Kooi ME, van der Wall EE, Lamb HJ, Siebelink HJ (2013) High field carotid vessel wall imaging: a study on reproducibility. Eur J Radiol 82(4):680–685Google Scholar

Copyright information

© ESMRMB 2013

Authors and Affiliations

  • Diederik F. van Wijk
    • 1
  • Aart C. Strang
    • 1
  • Raphael Duivenvoorden
    • 1
  • Dirk-Jan F. Enklaar
    • 1
  • Rob J. van der Geest
    • 2
  • John J. P. Kastelein
    • 1
  • Eric de Groot
    • 1
  • Erik S. G. Stroes
    • 1
  • Aart J. Nederveen
    • 3
  1. 1.Department of Vascular MedicineAcademic Medical CenterAmsterdamThe Netherlands
  2. 2.Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.Department of RadiologyAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations