Topography of brain sodium accumulation in progressive multiple sclerosis

  • Adil Maarouf
  • Bertrand Audoin
  • Simon Konstandin
  • Audrey Rico
  • Elisabeth Soulier
  • Françoise Reuter
  • Arnaud Le Troter
  • Sylviane Confort-Gouny
  • Patrick J. Cozzone
  • Maxime Guye
  • Lothar R. Schad
  • Jean Pelletier
  • Jean-Philippe Ranjeva
  • Wafaa Zaaraoui
Research Article

Abstract

Object

Sodium accumulation is involved in neuronal injury occurring in multiple sclerosis (MS). We aimed to assess sodium accumulation in progressive MS, known to suffer from severe neuronal injury.

Materials and methods

3D-23Na-MRI was obtained on a 3T-MR-scanner in 20 progressive MS patients [11 primary-progressive (PPMS) and nine secondary-progressive (SPMS)] and 15 controls. Total sodium concentrations (TSC) within grey matter (GM), normal-appearing white matter (WM) and lesions were extracted. Statistical mapping analyses of TSC abnormalities were also performed.

Results

Progressive MS patients presented higher GM–TSC values (48.8 ± 3.1 mmol/l wet tissue vol, p < 0.001) and T2lesions-TSC values (50.9 ± 2.2 mmol/l wet tissue vol, p = 0.01) compared to GM and WM of controls. Statistical mapping analysis showed TSC increases in PPMS patients confined to motor and somatosensory cortices, prefrontal cortices, pons and cerebellum. In SPMS, TSC increases were associated with areas involving: primary motor, premotor and somatosensory cortices; prefrontal, cingulate and visual cortices; the corpus callosum, thalami, brainstem and cerebellum. Anterior prefrontal and premotor cortices TSC were correlated with disability.

Conclusion

Sodium accumulation is present in progressive MS patients, more restricted to the motor system in PPMS and more widespread in SPMS. Local brain sodium accumulation appears as a promising marker to monitor patients with progressive MS.

Keywords

Progressive multiple sclerosis Sodium MRI Grey matter Disability 

Notes

Acknowledgments

Part of this study (relative to the control group) was supported by the Agence Nationale de la Recherche (ANR-09-MNPS-025-SODIUMS). The other part (relative to the patient group) was funded by an unconditional grant from Novartis France (recipient: Jean Pelletier).

Supplementary material

10334_2013_396_MOESM1_ESM.doc (170 kb)
Supplementary material 1 (DOC 169 kb)
10334_2013_396_MOESM2_ESM.tiff (3 mb)
Supplementary material 2 (TIFF 3070 kb)

References

  1. 1.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128(Pt 11):2705–2712PubMedCrossRefGoogle Scholar
  2. 2.
    Lassmann H (2007) Multiple sclerosis: is there neurodegeneration independent from inflammation? J Neurol Sci 259(1–2):3–6PubMedCrossRefGoogle Scholar
  3. 3.
    Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15(3):239–245PubMedCrossRefGoogle Scholar
  4. 4.
    Pirko I, Lucchinetti CF, Sriram S, Bakshi R (2007) Gray matter involvement in multiple sclerosis. Neurology 68(9):634–642PubMedCrossRefGoogle Scholar
  5. 5.
    Calabrese M, Agosta F, Rinaldi F, Mattisi I, Grossi P, Favaretto A, Atzori M, Bernardi V, Barachino L, Rinaldi L, Perini P, Gallo P, Filippi M (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66(9):1144–1150PubMedGoogle Scholar
  6. 6.
    Filippi M, Rocca MA, De Stefano N, Enzinger C, Fisher E, Horsfield MA, Inglese M, Pelletier D, Comi G (2011) Magnetic resonance techniques in multiple sclerosis: the present and the future. Arch Neurol 68(12):1514–1520PubMedCrossRefGoogle Scholar
  7. 7.
    Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517PubMedCrossRefGoogle Scholar
  8. 8.
    Lassmann H (2010) Axonal and neuronal pathology in multiple sclerosis: what have we learnt from animal models. Exp Neurol 225(1):2–8PubMedCrossRefGoogle Scholar
  9. 9.
    Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG (2004) Co-localization of sodium channel Nav1.6 and the sodium-calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127(Pt 2):294–303PubMedCrossRefGoogle Scholar
  10. 10.
    Smith KJ (2007) Sodium channels and multiple sclerosis: roles in symptom production, damage and therapy. Brain Pathol 17(2):230–242PubMedCrossRefGoogle Scholar
  11. 11.
    Stys PK (2005) General mechanisms of axonal damage and its prevention. J Neurol Sci 233(1–2):3–13PubMedCrossRefGoogle Scholar
  12. 12.
    Waxman SG (2006) Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7(12):932–941PubMedCrossRefGoogle Scholar
  13. 13.
    Andrews HE, Nichols PP, Bates D, Turnbull DM (2005) Mitochondrial dysfunction plays a key role in progressive axonal loss in Multiple Sclerosis. Med Hypotheses 64(4):669–677PubMedCrossRefGoogle Scholar
  14. 14.
    Mahad D, Lassmann H, Turnbull D (2008) Review: mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 34(6):577–589PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Waxman SG (2008) Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol 4(3):159–169PubMedCrossRefGoogle Scholar
  16. 16.
    Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G (2010) Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. Brain 133(Pt 3):847–857PubMedCrossRefGoogle Scholar
  17. 17.
    Zaaraoui W, Konstandin S, Audoin B, Nagel AM, Rico A, Malikova I, Soulier E, Viout P, Confort-Gouny S, Cozzone PJ, Pelletier J, Schad LR, Ranjeva JP (2012) Distribution of brain sodium accumulation correlates with disability in multiple sclerosis: a cross-sectional 23Na MR imaging study. Radiology 264(3):859–867PubMedCrossRefGoogle Scholar
  18. 18.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69(2):292–302PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33(11):1444–1452PubMedCrossRefGoogle Scholar
  20. 20.
    Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, Syndulko K, Weinshenker BG, Antel JP, Confavreux C, Ellison GW, Lublin F, Miller AE, Rao SM, Reingold S, Thompson A, Willoughby E (1999) Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122(Pt 5):871–882PubMedCrossRefGoogle Scholar
  21. 21.
    Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573PubMedCrossRefGoogle Scholar
  22. 22.
    Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27(4):425–441PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ranjeva JP, Audoin B, Au Duong MV, Ibarrola D, Confort-Gouny S, Malikova I, Soulier E, Viout P, Ali-Cherif A, Pelletier J, Cozzone P (2005) Local tissue damage assessed with statistical mapping analysis of brain magnetization transfer ratio: relationship with functional status of patients in the earliest stage of multiple sclerosis. AJNR Am J Neuroradiol 26(1):119–127PubMedGoogle Scholar
  24. 24.
    Khaleeli Z, Cercignani M, Audoin B, Ciccarelli O, Miller DH, Thompson AJ (2007) Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability. Neuroimage 37(1):253–261PubMedCrossRefGoogle Scholar
  25. 25.
    Bruck W, Bitsch A, Kolenda H, Bruck Y, Stiefel M, Lassmann H (1997) Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann Neurol 42(5):783–793PubMedCrossRefGoogle Scholar
  26. 26.
    Black JA, Newcombe J, Waxman SG (2010) Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain 133(Pt 3):835–846PubMedCrossRefGoogle Scholar
  27. 27.
    Lassmann H, van Horssen J, Mahad D (2012) Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 8(11):647–656PubMedCrossRefGoogle Scholar
  28. 28.
    Calabrese M, Rocca MA, Atzori M, Mattisi I, Bernardi V, Favaretto A, Barachino L, Romualdi C, Rinaldi L, Perini P, Gallo P, Filippi M (2009) Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72(15):1330–1336PubMedCrossRefGoogle Scholar
  29. 29.
    Ouwerkerk R (2011) Sodium MRI. Methods Mol Biol 711:175–201PubMedCrossRefGoogle Scholar
  30. 30.
    Kapoor R, Furby J, Hayton T, Smith KJ, Altmann DR, Brenner R, Chataway J, Hughes RA, Miller DH (2010) Lamotrigine for neuroprotection in secondary progressive multiple sclerosis: a randomised, double-blind, placebo-controlled, parallel-group trial. Lancet Neurol 9(7):681–688PubMedCrossRefGoogle Scholar

Copyright information

© ESMRMB 2013

Authors and Affiliations

  • Adil Maarouf
    • 1
  • Bertrand Audoin
    • 1
    • 2
  • Simon Konstandin
    • 3
  • Audrey Rico
    • 1
    • 2
  • Elisabeth Soulier
    • 1
  • Françoise Reuter
    • 1
  • Arnaud Le Troter
    • 1
  • Sylviane Confort-Gouny
    • 1
  • Patrick J. Cozzone
    • 1
  • Maxime Guye
    • 1
    • 4
  • Lothar R. Schad
    • 3
  • Jean Pelletier
    • 1
    • 2
  • Jean-Philippe Ranjeva
    • 1
  • Wafaa Zaaraoui
    • 1
  1. 1.CRMBM, UMR 7339Aix-Marseille Université, CNRSMarseilleFrance
  2. 2.Pôle de Neurosciences CliniquesAPHM, Hôpital de la TimoneMarseilleFrance
  3. 3.Computer Assisted Clinical MedicineHeidelberg UniversityMannheimGermany
  4. 4.Pôle d’Imagerie MédicaleAPHM, Hôpital de la TimoneMarseilleFrance

Personalised recommendations