Advertisement

Evaluation of a mobile NMR sensor for determining skin layers and locally estimating the T2eff relaxation time in the lower arm

  • Darius Kornetka
  • Martin Trammer
  • Jochen ZangeEmail author
Research Article

Abstract

Object

The nuclear magnetic resonance (NMR) mobile-universal-surface-explorer (MOUSE) was evaluated in a pilot study to determine its ability to detect physiological changes in human skin caused by physical or pharmacological interventions.

Materials and methods

The left lower arm skin thicknesses of ten male subjects were measured five times using a Profile NMR-MOUSE® (1H, 19 MHz) before and after a venous occlusion manoeuvre. In five of the subjects, the T2eff relaxation times were derived from a bi-exponential fitting and were determined in the dermis and subcutis before and after applying a salve containing capsaicin.

Results

The dermis (including the epidermis) showed rather homogeneous signal amplitudes. The subcutis was characterised by higher and more variable amplitudes. The full-skin thickness values were affirmed by ultrasound imaging. The NMR profiles did not show significant skin swelling due to venous occlusion. In the dermis, capsaicin caused significant (p < 0.05) decreases in both components of T 2eff (100 ± 19 ms–19 ± 10 ms; 9.5 ± 0.5 ms–7.2 ± 1.6 ms). In the subcutis, the T 2eff was not affected.

Conclusion

In principle, NMR-MOUSE profiles are capable of detecting skin structure. However, precise measurements are jeopardised by poor reproducibility, long acquisition times, and incompatibility between the geometries of the sensitive area of the instrument and the non-planar structure of the skin. In the dermis, T 2eff contrast could be used to detect the changes in tissue composition caused by inflammatory reactions.

Keywords

Mobile NMR NMR-MOUSE Fluid volume regulation Skin histology T2 relaxation time 

Abbreviations

NMR-MOUSE

Nuclear magnetic resonance-mobile universal surface explorer

T2eff

Transversal spin relaxation time including dephasing effects from magnetic field inhomogeneity and susceptibility effects

ILT

Inverse Laplace transformation

Notes

Acknowledgments

We thank Dr. Jörg Mauler from the Forschungszentrum Jülich, Germany, for very fruitful discussions.

References

  1. 1.
    Machnik A, Neuhofer W, Jantsch J, Dahlmann A, Tammela T, Machura K, Park JK, Beck FX, Muller DN, Derer W, Goss J, Ziomber A, Dietsch P, Wagner H, van Rooijen N, Kurtz A, Hilgers KF, Alitalo K, Eckardt KU, Luft FC, Kerjaschki D, Titze J (2009) Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nat Med 15(5):545–552Google Scholar
  2. 2.
    Thornton WE, Hoffler GW, Rummel JA (1977) Anthropometric changes and fluid shifts. In: Johnston RS, Dietlein LF (eds) Biomedical results from skylab (NASA SP-377), US Government Printing Office, Washington, pp 330–338Google Scholar
  3. 3.
    Diridollou S, Pavy-Le Traon A, Maillet A, Bellossi F, Black D, Patat F, Lagarde JM, Berson M, Gall Y (2000) Characterisation of gravity-induced facial skin oedema using biophysical measurement techniques. Skin Res Technol 6(3):118–127PubMedCrossRefGoogle Scholar
  4. 4.
    Diridollou S, Maillet A, Pavy-Le Traon A, Louisy F, Black D, Berson M, Gregoire JM, Gall Y, Arbeille P (2001) Use of thigh pressure cuffs to modulate simulated microgravity-induced changes in the skin measured with high-resolution B-scan ultrasound. Eur J Ultrasound 13(3):215–226PubMedCrossRefGoogle Scholar
  5. 5.
    Barral JK, Bangerter NK, Hu BS, Nishimura DG (2010) In vivo high-resolution magnetic resonance skin imaging at 1.5 T and 3 T. Magn Reson Med 63(3):790–796PubMedCrossRefGoogle Scholar
  6. 6.
    Song HK, Wehrli FW, Ma J (1997) In vivo MR microscopy of the human skin. Magn Reson Med 37(2):185–191PubMedCrossRefGoogle Scholar
  7. 7.
    Weis J, Ericsson A, Hemmingsson A (1999) Chemical shift artifact-free microscopy: spectroscopic microimaging of the human skin. Magn Reson Med 41(5):904–908PubMedCrossRefGoogle Scholar
  8. 8.
    Perlo J, Casanova F, Blümich B (2006) Advances in single-sided NMR. In: Webb GA (ed) Modern magnetic resonance, Part3: applications in materials science and food science. Springer, Dordrecht, pp 1503–1507Google Scholar
  9. 9.
    Perlo J, Casanova F, Blümich B (2005) Profiles with microscopic resolution by single-sided NMR. J Magn Reson 176(1):64–70PubMedCrossRefGoogle Scholar
  10. 10.
    Casanova F, Perlo J, Blümich B (2006) Depth profiling by single-sided NMR. In: Stapf S, Han S (eds) NMR imaging in chemical engineering. Wiley-VCH, Weinheim, pp 107–123CrossRefGoogle Scholar
  11. 11.
    Blümich B, Perlo J, Casanova F (2008) Mobile single sided NMR. Prog NMR Spectrosc 52(6):203–237Google Scholar
  12. 12.
    Canny JF (1986) A computational approach to edge detection. IEEE T Pattern Anal 8(6):679–698CrossRefGoogle Scholar
  13. 13.
    Helme RD, McKernan S (1985) Neurogenic flare responses following topical application of capsaicin in humans. Ann Neurol 18(4):505–509PubMedCrossRefGoogle Scholar
  14. 14.
    Van der Schueren BJ, de Hoon JN, Vanmolkot FH, Van Hecken A, Depre M, Kane SA, de Lepeleire I, Sinclair SR (2007) Reproducibility of the capsaicin-induced dermal blood flow response as assessed by laser Doppler perfusion imaging. Br J Clin Pharmacol 64(5):580–590Google Scholar
  15. 15.
    Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242CrossRefGoogle Scholar
  16. 16.
    Tsukahara K, Takema Y, Moriwaki S, Fujimura T, Imokawa G (2001) Dermal fluid translocation is an important determinant of the diurnal variation in human skin thickness. Br J Dermatol 145(4):590–596PubMedCrossRefGoogle Scholar
  17. 17.
    Gawkrodger DJ (2007) Dermatology. Churchill Livingstone Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Kamman RL, Go KG, Brouwer W, Berendsen HJ (1988) Nuclear magnetic resonance relaxation in experimental brain edema: effects of water concentration, protein concentration, and temperature. Magn Reson Med 6(3):265–274PubMedCrossRefGoogle Scholar
  19. 19.
    Harrison R, Bronskill MJ, Henkelman RM (1995) Magnetization transfer and T2 relaxation components in tissue. Magn Reson Med 33(4):490–496PubMedCrossRefGoogle Scholar
  20. 20.
    Kiricuta IC Jr, Simplaceanu V (1975) Tissue water content and nuclear magnetic resonance in normal and tumor tissues. Cancer Res 35(5):1164–1167PubMedGoogle Scholar
  21. 21.
    Blümich B (2005) Low-field and unilateral NMR. In: Blümich B (ed) Essential NMR. 1. Springer, Berlin, pp 231Google Scholar

Copyright information

© ESMRMB 2012

Authors and Affiliations

  • Darius Kornetka
    • 1
  • Martin Trammer
    • 1
  • Jochen Zange
    • 1
    • 2
    Email author
  1. 1.Institute of Aerospace Medicine, Deutsches Zentrum für Luft- und Raumfahrt (DLR e.V.)CologneGermany
  2. 2.Medical Faculty of the University of CologneCologneGermany

Personalised recommendations