Advertisement

Effects of air susceptibility on proton resonance frequency MR thermometry

  • Markus N. StreicherEmail author
  • Andreas Schäfer
  • Enrico Reimer
  • Bibek Dhital
  • Robert Trampel
  • Dimo Ivanov
  • Robert Turner
Research Article

Abstract

Object

The temperature dependence of the proton resonance frequency (PRF) is often used in MR thermometry. However, this method is prone to even very small changes in local magnetic field strength. Here, we report on the effects of susceptibility changes of surrounding air on the magnetic field inside an object and their inferred effect on the measured MR temperature.

Materials and methods

MR phase thermometry was performed on spherical agar phantoms enclosed in cylindrical containers at 7 T. The air susceptibility inside the cylindrical container was changed by both heating the air and changing the gas composition.

Results

Changing the temperature of surrounding air from 23 to 69°C caused an apparent MR temperature error of 2 K. When ambient air was displaced by 100% oxygen, the MR temperature error increased to 40 K. The magnetic field shift and therefore error in inferred MR temperature scales linearly with volume susceptibility change and has a strong and nontrivial dependence on the experimental configuration.

Conclusion

Air susceptibility changes associated with oxygen concentration changes greatly affect PRF MR thermometry measurements. Air temperature changes can also affect these measurements, but to a smaller degree. For uncalibrated MR thermometry, air susceptibility changes may be a significant source of error.

Keywords

Air Susceptibility Temperature PRF PRFS-based MR thermometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rieke V, Pauly KB (2008) MR thermometry. J Magn Reson Imaging 27(2): 376–390PubMedCrossRefGoogle Scholar
  2. 2.
    Hindman JC (1966) Proton resonance shift of water in the gas and liquid states. J Chem Phys 44(12): 4582–4592CrossRefGoogle Scholar
  3. 3.
    Lepetit-Coiffe M, Laumonier H, Seror O, Quesson B, Sesay MB, Moonen CTW, Grenier N, Trillaud H (2010) Real-time monitoring of radiofrequency ablation of liver tumors using thermal-dose calculation by MR temperature imaging: initial results in nine patients, including follow-up. Eur Radiol 20(1): 193–201PubMedCrossRefGoogle Scholar
  4. 4.
    Wonneberger U, Schnackenburg B, Wlodarczyk W, Rump J, Walter T, Streitparth F, Teichgraber UKM (2010) Evaluation of thermometric monitoring for intradiscal laser ablation in an open 1.0 T MR scanner. Int J Hyperthermia 26(4): 295–304PubMedCrossRefGoogle Scholar
  5. 5.
    de Senneville BD, Roujol S, Moonen C, Ries M (2010) Motion correction in MR thermometry of abdominal organs: a comparison of the referenceless vs. the multibaseline approach. Magn Reson Med 64(5): 1373–1381PubMedCrossRefGoogle Scholar
  6. 6.
    Seifert F, Wuebbeler G, Junge S, Ittermann B, Rinneberg H (2007) Patient safety concept for multichannel transmit coils. J Magn Reson Imaging 26(5): 1315–1321PubMedCrossRefGoogle Scholar
  7. 7.
    Collins CM, Liu WZ, Wang JH, Gruetter R, Vaughan JT, Ugurbil K, Smith MB (2004) Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz. J Magn Reson Imaging 19(5): 650–656PubMedCrossRefGoogle Scholar
  8. 8.
    El-Sharkawy AM, Schar M, Bottomley PA, Atalar E (2006) Monitoring and correcting spatio-temporal variations of the MR scanner’s static magnetic field. Magn Reson Mater Phys 19(5): 223–236CrossRefGoogle Scholar
  9. 9.
    Kuroda K, Mulkern RV, Oshio K, Panych LP, Nakai T, Moriya T, Okuda S, Hynynen K, Joles FA (2000) Temperature mapping using the water proton chemical shift: self-referenced method with echo-planar spectroscopic imaging. Magn Reson Med 43(2): 220–225PubMedCrossRefGoogle Scholar
  10. 10.
    Boss A, Graf H, Muller-Bierl B, Clasen S, Schmidt D, Pereira PL, Schick F (2005) Magnetic susceptibility effects on the accuracy of MR temperature monitoring by the proton resonance frequency method. J Magn Reson Imaging 22(6): 813–820PubMedCrossRefGoogle Scholar
  11. 11.
    Depoorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34(3): 359–367CrossRefGoogle Scholar
  12. 12.
    Sprinkhuizen SM, Konings MK, van der Bom MJ, Viergever MA, Bakker CJG, Bartels LW (2010) Temperature-induced tissue susceptibility changes lead to significant temperature errors in PRFS-based MR thermometry during thermal interventions. Magn Reson Med 64(5): 1360–1372PubMedCrossRefGoogle Scholar
  13. 13.
    Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, Metaxas D, Whitaker R (2002) Engineering and algorithm design for an image processing API: a technical report on ITK—the insight toolkit. In: Westwood JD, Hoffman HM, Robb RA, Stredney D (eds) Medicine meets virtual reality 02/10— Digital upgrades: applying Moores Law to Health, vol 85. Studies in health technology and informatics. I O S Press, Amsterdam, pp 586–592Google Scholar
  14. 14.
    Witoszynskyj S, Rauscher A, Reichenbach JR, Barth M (2009) Phase unwrapping of MR images using Phi UN—A fast and robust region growing algorithm. Med Image Anal 13(2): 257–268PubMedCrossRefGoogle Scholar
  15. 15.
    Davis RS (1998) Equation for the volume magnetic susceptibility of moist air. Metrologia 35(1): 49–55CrossRefGoogle Scholar
  16. 16.
    Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6): 815–850PubMedCrossRefGoogle Scholar
  17. 17.
    Kaye GWC, Laby TH (eds) (2005) 2.6.6 Magnetic properties of materials. In: Tables of physical & chemical constants, 16th edn. The National Physical LaboratoryGoogle Scholar
  18. 18.
    Marques JP, Bowtell R (2005) Application of a fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson Part B 25B(1): 65–78CrossRefGoogle Scholar
  19. 19.
    Schäfer A, Wharton S, Gowland P, Bowtell R (2009) Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI. Neuroimage 48(1): 126–137PubMedCrossRefGoogle Scholar
  20. 20.
    Jochimsen TH, von Mengershausen M (2004) ODIN—Object-oriented development interface for NMR. J Magn Reson 170(1): 67–78PubMedCrossRefGoogle Scholar
  21. 21.
    Streicher MN, Schäfer A, Dhital B, Müller D, Heidemann RM, Pampel A, Ivanov D, Turner R (2010) Chemically selective asymmetric spin-echo EPI phase imaging for internally referenced MR thermometry. Proc Int Soc Magn Reson Med 18: 3018Google Scholar
  22. 22.
    Raj D, Paley DP, Anderson AW, Kennan RP, Gore JC (2000) A model for susceptibility artefacts from respiration in functional echo-planar magnetic resonance imaging. Phys Med Biol 45(12): 3809–3820PubMedCrossRefGoogle Scholar
  23. 23.
    Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K (2004) Referenceless PRF shift thermometry. Magn Reson Med 51(6): 1223–1231PubMedCrossRefGoogle Scholar
  24. 24.
    Salomir R, Viallon M, Roland J, Terraz S, Morel D, Becker C, Gross P (2010) Reference-less PRFS MR thermometry using a thin open border and the harmonic functions theory: 2D experimental validation. Proc Int Soc Magn Reson Med 18: 247Google Scholar
  25. 25.
    Hedlund LW, Cofer GP, Owen SJ, Johnson GA (2000) MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. Magn Reson Imaging 18(6): 753–759PubMedCrossRefGoogle Scholar

Copyright information

© ESMRMB 2011

Authors and Affiliations

  • Markus N. Streicher
    • 1
    Email author
  • Andreas Schäfer
    • 1
  • Enrico Reimer
    • 1
  • Bibek Dhital
    • 1
  • Robert Trampel
    • 1
  • Dimo Ivanov
    • 1
  • Robert Turner
    • 1
  1. 1.Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations