Advertisement

Reproducibility of subregional trabecular bone micro-architectural measures derived from 7-Tesla magnetic resonance images

  • Gregory ChangEmail author
  • Ligong Wang
  • Guoyuan Liang
  • James S. Babb
  • Punam K. Saha
  • Ravinder R. Regatte
Short Communication

Abstract

High-resolution magnetic resonance imaging (MRI) of trabecular bone combined with quantitative image analysis represents a powerful technique to gain insight into trabecular bone micro-architectural derangements in osteoporosis and osteoarthritis. The increased signal-to-noise ratio of ultra high-field MR (≥7 Tesla) permits images to be obtained with higher resolution and/or decreased scan time compared to scanning at 1.5/3T. In this small feasibility study, we show high measurement precision for subregional trabecular bone micro-architectural analysis performed on 7T knee MR images. The results provide further support for the use of trabecular bone measures as biomarkers in clinical studies of bone disorders.

Keywords

Ultra high field 7 Tesla MRI Trabecular bone Micro-architecture Knee 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Majumdar S (2002) Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging 13: 323–334PubMedCrossRefGoogle Scholar
  2. 2.
    Wehrli FW (2007) Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging 25: 390–409PubMedCrossRefGoogle Scholar
  3. 3.
    Blumenkrantz G, Lindsey CT, Dunn TC et al (2004) A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartil 12: 997–1005CrossRefGoogle Scholar
  4. 4.
    Lindsey CT, Narasimhan A, Adolfo JM et al (2004) Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartil 12: 86–96CrossRefGoogle Scholar
  5. 5.
    Newitt DC, van Rietbergen B, Majumdar S (2002) Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int 13: 278–287PubMedCrossRefGoogle Scholar
  6. 6.
    Gomberg BR, Wehrli FW, Vasilic B et al (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35: 266–276PubMedCrossRefGoogle Scholar
  7. 7.
    Wald MJ, Magland JF, Rajapakse CS, Wehrli FW (2010) Structural and mechanical parameters of trabecular bone estimated from in vivo high-resolution magnetic resonance images at 3 Tesla field strength. J Magn Reson Imaging 31: 1157–1168PubMedCrossRefGoogle Scholar
  8. 8.
    Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2): 187–198PubMedCrossRefGoogle Scholar
  9. 9.
    Saha PK, Wehrli FW (2004) Measurement of trabecular bone thickness in the limited resolution regime of in vivo MRI by fuzzy distance transform. IEEE Trans Med Imaging 23: 53–62PubMedCrossRefGoogle Scholar
  10. 10.
    Saha PK, Gomberg BR, Wehrli FW (2000) Three-dimensional digital topological characterization of cancellous bone architecture. Int J Imaging Syst Technol 2000 11: 81–90CrossRefGoogle Scholar
  11. 11.
    Krug R, Carballido-Gamio J, Banerjee S et al (2007) In vivo bone and cartilage MRI using full-balanced steady-state free-precession at 7 Tesla. Magn Reson Med 58: 1294–1298PubMedCrossRefGoogle Scholar
  12. 12.
    Banerjee S, Krug R, Carballido-Gamio et al (2008) Rapid in vivo musculoskeletal MR with parallel imaging at 7T. Magn Reson Med 29: 655–660CrossRefGoogle Scholar
  13. 13.
    Magland J, Rajapakse CS, Wright AC, Acciavatti R, Wehrli FW (2010) 3D fast spin echo with out-of-slab cancellation: a technique for high resolution structural imaging of trabecular bone at 7 Tesla. Magn Reson Med 63: 719–727PubMedCrossRefGoogle Scholar
  14. 14.
    Chang G, Pakin SK, Schweitzer ME, Saha PK, Regatte RR (2008) Adaptations in trabecular bone microarchitecture in Olympic athletes determined by 7T MRI. J Magn Reson Imaging 27: 1089–1095PubMedCrossRefGoogle Scholar
  15. 15.
    Chang G, Friedrich KM, Wang L et al (2010) MRI of the wrist at 7 Tesla using an eight-channel array coil combined with parallel imaging: preliminary results. J Magn Reson Imaging 31: 740–746PubMedCrossRefGoogle Scholar

Copyright information

© ESMRMB 2011

Authors and Affiliations

  • Gregory Chang
    • 1
    Email author
  • Ligong Wang
    • 1
  • Guoyuan Liang
    • 2
  • James S. Babb
    • 1
  • Punam K. Saha
    • 2
  • Ravinder R. Regatte
    • 1
  1. 1.Center for Biomedical Imaging, Department of RadiologyNew YorkUSA
  2. 2.Departments of Electrical and Computer Engineering and Radiology3414 Seamans Center for the Engineering Arts and Sciences, The University of IowaIowa CityUSA

Personalised recommendations