A Bayesian hierarchical model for DCE-MRI to evaluate treatment response in a phase II study in advanced squamous cell carcinoma of the head and neck

  • Brandon WhitcherEmail author
  • Volker J. Schmid
  • David J. Collins
  • Matthew R. Orton
  • Dow-Mu Koh
  • Isabela Diaz de Corcuera
  • Marta Parera
  • Josep M. del Campo
  • Nandita M. deSouza
  • Martin O. Leach
  • Kevin Harrington
  • Iman A. El-Hariry
Research Article



Pharmacokinetic parameters from dynamic contrast-enhanced MRI (DCE-MRI) were used to assess the perfusion effects due to treatment response using a tyrosine kinase inhibitor. A Bayesian hierarchical model (BHM) is proposed, as an alternative to voxel-wise estimation procedures, to test for a treatment effect while explicitly modeling known sources of variability.

Materials and methods

Nine subjects from a randomized, blinded, placebo-controlled, multicenter, phase II study of lapatinib were examined before and after treatment. Kinetic parameters were estimated, with an extended compartmental model and subject-specific arterial input function, on a voxel-by-voxel basis.


The group treated with lapatinib had a decrease in median K trans of 0.17min−1, when averaged across all voxels in the tumor ROIs, compared with no change in the placebo group based on nonlinear regression. A hypothesis test of equality between pre- and posttreatment K trans could not be rejected against a one-sided alternative (P = 0.09). Equality between median K trans in placebo and lapatinib groups posttreatment could also not be rejected using the BHM (P = 0.32). Across all scans acquired in the study, estimates of K trans at one site were greater on average than those at the other site by including a site effect in the BHM. The inter-voxel variability is of similar order (within 15%) when compared to the inter-patient variability.


Though the study contained a small number of subjects and no significant difference was found, the Bayesian hierarchical model provided estimates of variability from known sources in the study and confidence intervals for all estimated parameters. We believe the BHM provides a straightforward and thorough interrogation of the imaging data at the level of voxels, patients or sites in this multicenter clinical study.


Bayesian Gadolinium Oncology Perfusion Permeability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brizel DM, Dodge RK, Clough RW, Dewhirst MW (1999) Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother and Oncol 53(2): 113–117CrossRefGoogle Scholar
  2. 2.
    Lehtiö K, Eskola O, Viljanen T, Grönoos T, Sillanmäki L, Grénman R, Minn H (2004) Imaging perfusion and hypoxia with PET to predict radiotherapy response in head and neck cancer. Intern J Radiat Oncol Biol Phy 59(4): 971–982CrossRefGoogle Scholar
  3. 3.
    Cao Y, Popovtzer A, Li D, Chepeha D, Moyer JS, Prince ME, Worden F, Teknos T, Bradford C, Mukherji SK, Eisbruch A (2008) Early prediction of outcome in advanced head and neck cancer based on tumour blood volume alterations during therapy: a prospective study. Intern J Radiat Oncol Biol Phy 72(5): 1287–1290CrossRefGoogle Scholar
  4. 4.
    Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharm Exp Ther 315(3): 971–979CrossRefGoogle Scholar
  5. 5.
    Wilmes LJ, Pallavicini MG, Fleming LM, Gibbs J, Wang D, Li KL, Partridge SC, Henry RG, Shalinsky DR, Hu-Lowe D, Park JW, McShane TM, Lu Y, Brasch RC, Hylton NM (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25: 319–327PubMedCrossRefGoogle Scholar
  6. 6.
    LoRusso PM, Gadgeel SM, Wozniak A, Barge AJ, Jones HK, DelProposto ZS, DeLuca PA, Evelhoch JL, Boerner SA, Wheeler C (2008) Phase I evaluation of ZD6126, a novel vascular-targeting agent, in patients with solid tumors. Invest New Drugs 26: 159–167PubMedCrossRefGoogle Scholar
  7. 7.
    Ren J, Huan Y, Wang H, Chang YJ, Zhao HT, Ge YL, Liu Y, Yang Y (2008) Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol 63(2): 153–159PubMedCrossRefGoogle Scholar
  8. 8.
    Ellis L (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 18: 1007–1021PubMedCrossRefGoogle Scholar
  9. 9.
    Clamp AR, Jayson GC (2008) The role of imaging in the clinical development of antiangiogenic agents. In: Teicher BA, Ellis LM (eds) Antiangiogenic agents in cancer therapy, cancer drug discovery and development, 2nd edn. Humana Press, Totowa, pp 525–536CrossRefGoogle Scholar
  10. 10.
    Moasser MM, Wilmes LJ, Wong CH, Aliu S, Li KL, Wang D, Hom YK, Hann B, Hylton NM (2007) Improved tumor vascular function following high-dose epidermal growth factor receptor tyrosine kinase inhibitor therapy. J Magn Reson Imaging 26(6): 1618–1625PubMedCrossRefGoogle Scholar
  11. 11.
    Noworolski SM, Fischbein NJ, Kaplan MJ, Lu Y, Nelson SJ, Carvajal L, Henry RG (2003) Challenges in dynamic contrast-enhanced MRI imaging of cervical lymph nodes to detect metastatic disease. J Magn Reson Imaging 17(4): 455–462PubMedCrossRefGoogle Scholar
  12. 12.
    Asaumi J, Yanagi Y, Konouchi H, Misatomi M, Matsuzaki H, Kishi K (2004) Application of dynamic contrast-enhanced MRI to differentiate malignant lymphoma from squamous cell carcinoma in the head and neck. Oral Oncol 40: 579–584PubMedCrossRefGoogle Scholar
  13. 13.
    Kim S, Quon H, Loevner LA, Rosen MA, Dougherty L, Kilger AM, Glickson JD, Poptani H (2007) Transcytolemmal water exchange in pharmacokinetic analysis of dynamic contrast-enhanced MRI data in squamous cell carcinoma of the head and neck. J Magn Reson Imaging 26(6): 1607–1617PubMedCrossRefGoogle Scholar
  14. 14.
    Newbold K, Castellano I, Charles-Edwards E, Mears D, Sohaib A, Leach M, Rhys-Evans P, Larke P, Fisher C, Harrington K, Nutting C (2009) An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computer tomography for detection of intratumoral hypoxia in head-and-neck cancer. Intern J Radiat Oncol Biol Phys 74(1): 29–37CrossRefGoogle Scholar
  15. 15.
    Juan CJ, Chen CY, Jen YM, Liu HS, Liu YJ, Hsueh CJ, Wang CY, Chou YC, Chai YT, Huang GS, Chung HW (2009) Perfusion characteristics of late radiation injury of parotid glands: quantitative evaluation with dynamic contrast-enhanced MRI. Europ Radiol 19: 94–102CrossRefGoogle Scholar
  16. 16.
    Hoskin PJ, Saunders MI, Goodchild K, Powell MEB, Taylor NJ, Baddeley H (1999) Dynamic contrast enhanced magnetic resonance scanning as a predictor of response to accelerated radiotherapy for advanced head and neck cancer. Br J Radiol 72: 1093–1098PubMedGoogle Scholar
  17. 17.
    Rijpkema M, Kaanders JHAM, Joosten FBM, van der Kogel AJ, Heershap A (2001) Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. J Magn Reson Imaging 14(4): 457–463PubMedCrossRefGoogle Scholar
  18. 18.
    Schmid VJ, Whitcher B, Padhani AR, Taylor NJ, Yang GZ (2009) A Bayesian hierarchical model for the analysis of a longitudinal dynamic contrast-enhanced MRI oncology study. Magn Reson Med 61(1): 163–174PubMedCrossRefGoogle Scholar
  19. 19.
    Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharm Rev 3: 1–41PubMedGoogle Scholar
  20. 20.
    Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7: 91–101PubMedCrossRefGoogle Scholar
  21. 21.
    Parker GJM, Buckley DL (2005) Tracer kinetic modelling for T 1-weighted DCE-MRI. In: Jackson A, Buckley DL, Parker GJM (eds) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Springer, Berlin, pp 81–92CrossRefGoogle Scholar
  22. 22.
    Galbraith SM, Rustin GJ, Lodge MA, Taylor NJ, Stirling JJ, Jameson M, Thompson P, Hough D, Gumbrell L, Padhani AR (2002) Effects of 5,6-dimethylxanthane-4-acetic acid on human tumor microcirculation assessed by dynamic contrast-enhanced magnetic resonance imaging. J Clin Oncol 20(18): 3826–3840PubMedCrossRefGoogle Scholar
  23. 23.
    Evelhoch JE, LoRusso PM, He Z, DelProposto Z, Polin L, Corbett TH, Langmuir P, Wheeler C, Stone A, Leadbetter J, Ran AJ, Blakey DC, Waterton JC (2004) Magnetic resonance imaging measurements of the response of murine and human tumors to the vascular-targeting agent ZD6126. Clin Cancer Res 10: 3650–3657PubMedCrossRefGoogle Scholar
  24. 24.
    Galbraith SM, Maxwell RJ, Lodge MA, Tozer GM, Wilson J, Taylor NJ, Stirling JJ, Sena L, Padhani AR, Rustin GJS (2003) Combrestatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging. J Clin Oncol 21(15): 2831–2842PubMedCrossRefGoogle Scholar
  25. 25.
    Brown H, Prescott R (1999) Applied mixed models in medicine. Wiley, ChichesterGoogle Scholar
  26. 26.
    Galbraith SM (2006) Imaging the effects of vasculature-targeting agents. In: Siemann DW (ed.) Vascular-targeted therapies in oncology. Wiley, Chichester, pp 277–304CrossRefGoogle Scholar
  27. 27.
    Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET, Carbone PP (1982) Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol 5: 649– 655PubMedCrossRefGoogle Scholar
  28. 28.
    Buckley DL, Parker GJM (2005) Measuring contrast agent concentration in T 1-weighted dynamic contrast-enhanced MRI. In: Jackson A, Buckley DL, Parker GJM (eds) Dynamic contrast-enhanced magnetic resonance imaging in oncology. Springer, Berlin, pp 69–80CrossRefGoogle Scholar
  29. 29.
    Parker GJM, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56: 993– 1000PubMedCrossRefGoogle Scholar
  30. 30.
    Orton MR, d’Arcy JA, Walker-Samuel S, Hawkes DJ, Atkinson D, Collins DJ, Leach MO (2008) Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phy Med Biol 53: 1225–1239CrossRefGoogle Scholar
  31. 31.
    Schmid V, Whitcher B, Padhani AR, Taylor NJ, Yang GZ (2006) Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging. IEEE Trans Med Imaging 25(12): 1627–1636PubMedCrossRefGoogle Scholar
  32. 32.
    Whitcher B, Schmid VJ (2010) dcemriS4: a package for medical image analysis. R package version 0.40Google Scholar
  33. 33.
    R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0Google Scholar
  34. 34.
    Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman & Hall, LondonGoogle Scholar
  35. 35.
    Gudbjartsson H, Patz S (1995) The Rician distribution of noisy MRI data. Magn Reson Med 34: 910–914PubMedCrossRefGoogle Scholar
  36. 36.
    Orton MR, Collins DJ, Walker-Samuel S, d’Arcy JA, Hawkes DJ, Atkinson D, Leach MO (2007) Bayesian estimation of pharmacokinetic parameters for DCE-MRI with a robust treatment of enhancement onset time. Phy Med Biol 52: 2393–2408CrossRefGoogle Scholar
  37. 37.
    Collins DJ, Padhani AR (2004) Dynamic magnetic resonance imaging of tumor perfusion. IEEE Eng Biol Med Magazine 65–83Google Scholar
  38. 38.
    del Campo JM, Sebastian P, Hitt R, Carracedo C, Lokanatha D, Bourhis J, Harrington K, Midwinter D, El Hariry I, Biswas-Baldwin N (2008) Effect of lapatinib monotherapy on apoptosis and proliferation: results of a phase II randomised study in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). Ann Oncol 19(Suppl. 8):viii217–viii224. Abstract 6880Google Scholar

Copyright information

© ESMRMB 2010

Authors and Affiliations

  • Brandon Whitcher
    • 1
    Email author
  • Volker J. Schmid
    • 2
  • David J. Collins
    • 3
  • Matthew R. Orton
    • 3
  • Dow-Mu Koh
    • 3
  • Isabela Diaz de Corcuera
    • 4
  • Marta Parera
    • 4
  • Josep M. del Campo
    • 4
  • Nandita M. deSouza
    • 3
  • Martin O. Leach
    • 3
  • Kevin Harrington
    • 3
  • Iman A. El-Hariry
    • 5
  1. 1.GlaxoSmithKline Clinical Imaging CentreHammersmith Hospital, Imperial CollegeLondonUK
  2. 2.Department of StatisticsLudwig-Maximilians-Universität MünchenMünchenGermany
  3. 3.Institute of Cancer ResearchSutton, SurreyUK
  4. 4.Department of Medical OncologyVall d’Hebron University HospitalBarcelonaSpain
  5. 5.Oncology Medicines Development CentreGlaxoSmithKlineLondonUK

Personalised recommendations