Motor cortical reorganization is present after a single attack of multiple sclerosis devoid of cortico-spinal dysfunction

  • Audrey RicoEmail author
  • Wafaa Zaaraoui
  • Jerome Franques
  • Shahram Attarian
  • Françoise Reuter
  • Irina Malikova
  • Sylviane Confort-Gouny
  • Elisabeth Soulier
  • Jean Pouget
  • Patrick J. Cozzone
  • Jean Pelletier
  • Jean-Philippe Ranjeva
  • Bertrand Audoin
Research Article



While occurrence of motor cortical reorganization has been clearly demonstrated in patients with multiple sclerosis (MS), it is not yet clear whether this cortical reorganization constitutes a response to cortico-spinal lesions or to more diffuse damage affecting the neuronal network involved in motor act preparation, or both. We proposed to investigate the changes in the activation pattern during a simple motor task devoid of cortico-spinal dysfunction occurring in patients with clinically isolated syndrome (CIS) suggestive of MS.

Materials and methods

Among 15 right-handed CIS patients, we selected eight patients with a preserved central motor pathway established by motor evoked potentials. Ten healthy right-handed gender- and age-matched volunteers were also included. After morphological MRI, subjects performed calibrated conjugated finger flexion and extension movements during fMRI acquision.


In CIS patients, simple movements of the non-dominant hand induced recruitment of the anterior cingulate cortex (BA32) usually involved in complex motor movements. This reorganization was correlated with the diffuse brain tissue damage (brain T 2 lesion load).


These results suggest that at least part of the cortical reorganization observed during very simple tasks in the earliest stage of MS occurs whether or not the efferent pathways are intact.


Multiple sclerosis Clinically isolated syndromes Functional magnetic resonance imaging Cortical reorganization Motor tasks Motor evoked potentials Transcranial magnetic stimulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roux FE, Boulanouar K, Ibarrola D, Tremoulet M, Chollet F, Berry I (2000) Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. J Neurol Neurosurg Psychiatry 69: 453–463PubMedCrossRefGoogle Scholar
  2. 2.
    Schlosser MJ, McCarthy G, Fulbright RK, Gore JC, Awad IA (1997) Cerebral vascular malformations adjacent to sensorimotor and visual cortex. Functional magnetic resonance imaging studies before and after therapeutic intervention. Stroke 28: 1130–1137Google Scholar
  3. 3.
    Calautti C, Baron JC (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34: 1553–1566PubMedCrossRefGoogle Scholar
  4. 4.
    Calautti C, Leroy F, Guincestre JY, Baron JC (2003) Displacement of primary sensorimotor cortex activation after subcortical stroke: a longitudinal PET study with clinical correlation. Neuroimage 19: 1650–1654PubMedCrossRefGoogle Scholar
  5. 5.
    Reddy H, Narayanan S, Arnoutelis R, Jenkinson M, Antel J, Matthews PM, Arnold DL (2000) Evidence for adaptive functional changes in the cerebral cortex with axonal injury from multiple sclerosis. Brain 123(Pt 11): 2314–2320PubMedCrossRefGoogle Scholar
  6. 6.
    Rocca MA, Colombo B, Falini A, Ghezzi A, Martinelli V, Scotti G, Comi G, Filippi M (2005) Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurol 4: 618–626PubMedCrossRefGoogle Scholar
  7. 7.
    Mezzapesa DM, Rocca MA, Rodegher M, Comi G, Filippi M (2008) Functional cortical changes of the sensorimotor network are associated with clinical recovery in multiple sclerosis. Hum Brain Mapp 29: 562–573PubMedCrossRefGoogle Scholar
  8. 8.
    Pantano P, Iannetti GD, Caramia F, Mainero C, Di Legge S, Bozzao L, Pozzilli C, Lenzi GL (2002) Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain 125: 1607–1615PubMedCrossRefGoogle Scholar
  9. 9.
    Pantano P, Mainero C, Iannetti GD, Caramia F, Di Legge S, Piattella MC, Pozzilli C, Bozzao L, Lenzi GL (2002) Contribution of corticospinal tract damage to cortical motor reorganization after a single clinical attack of multiple sclerosis. Neuroimage 17: 1837–1843PubMedCrossRefGoogle Scholar
  10. 10.
    Miller DH, Thompson AJ, Filippi M (2003) Magnetic resonance studies of abnormalities in the normal appearing white matter and grey matter in multiple sclerosis. J Neurol 250: 1407–1419PubMedCrossRefGoogle Scholar
  11. 11.
    Vrenken H, Geurts JJ, Knol DL, Van Dijk LN, Dattola V, Jasperse B, Van Schijndel RA, Polman CH, Castelijns JA, Barkhof F, Pouwels PJ (2006) Whole-brain T1 mapping in multiple sclerosis: global changes of normal-appearing gray and white matter. Radiology 240: 811–820PubMedCrossRefGoogle Scholar
  12. 12.
    Traboulsee A, Dehmeshki J, Brex PA, Dalton CM, Chard D, Barker GJ, Plant GT, Miller DH (2002) Normal-appearing brain tissue MTR histograms in clinically isolated syndromes suggestive of MS. Neurology 59: 126–128PubMedGoogle Scholar
  13. 13.
    Rocca MA, Agosta F, Sormani MP, Fernando K, Tintore M, Korteweg T, Tortorella P, Miller DH, Thompson A, Rovira A, Montalban X, Polman C, Barkhof F, Filippi M (2008) A three-year, multi-parametric MRI study in patients at presentation with CIS. J Neurol 255: 683–691PubMedCrossRefGoogle Scholar
  14. 14.
    Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1: 1106–1107PubMedCrossRefGoogle Scholar
  15. 15.
    Beer S, Rosler KM, Hess CW (1995) Diagnostic value of paraclinical tests in multiple sclerosis: relative sensitivities and specificities for reclassification according to the Poser committee criteria. J Neurol Neurosurg Psychiatry 59: 152–159PubMedCrossRefGoogle Scholar
  16. 16.
    Kidd D, Thompson PD, Day BL, Rothwell JC, Kendall BE, Thompson AJ, Marsden CD, McDonald WI (1998) Central motor conduction time in progressive multiple sclerosis. Correlations with MRI and disease activity. Brain 121: 1109–1116Google Scholar
  17. 17.
    Di Lazzaro V, Oliviero A, Profice P, Ferrara L, Saturno E, Pilato F, Tonali P (1999) The diagnostic value of motor evoked potentials. Clin Neurophysiol 110: 1297–1307PubMedCrossRefGoogle Scholar
  18. 18.
    Colombo B, Martinelli Boneschi F, Rossi P, Rovaris M, Maderna L, Filippi M, Comi G (2000) MRI and motor evoked potential findings in nondisabled multiple sclerosis patients with and without symptoms of fatigue. J Neurol 247: 506–509PubMedCrossRefGoogle Scholar
  19. 19.
    Fuhr P, Borggrefe-Chappuis A, Schindler C, Kappos L (2001) Visual and motor evoked potentials in the course of multiple sclerosis. Brain 124: 2162–2168PubMedCrossRefGoogle Scholar
  20. 20.
    Humm AM, Magistris MR, Truffert A, Hess CW, Rosler KM (2003) Central motor conduction differs between acute relapsing-remitting and chronic progressive multiple sclerosis. Clin Neurophysiol 114: 2196–2203PubMedCrossRefGoogle Scholar
  21. 21.
    Kalkers NF, Strijers RL, Jasperse MM, Neacsu V, Geurts JJ, Barkhof F, Polman CH, Stam CJ (2007) Motor evoked potential: a reliable and objective measure to document the functional consequences of multiple sclerosis? Relation to disability and MRI. Clin Neurophysiol 118: 1332–1340PubMedCrossRefGoogle Scholar
  22. 22.
    Gagliardo A, Galli F, Grippo A, Amantini A, Martinelli C, Amato MP, Borsini W (2007) Motor evoked potentials in multiple sclerosis patients without walking limitation: amplitude vs. conduction time abnormalities. J Neurol 254: 220–227PubMedCrossRefGoogle Scholar
  23. 23.
    Rico A, Audoin B, Franques J, Eusebio A, Reuter F, Malikova I, Ali Cherif A, Pouget J, Pelletier J, Attarian S (2009) Motor evoked potentials in clinically isolated syndrome suggestive of multiple sclerosis. Mult Scler 15: 355–362PubMedCrossRefGoogle Scholar
  24. 24.
    Magistris MR, Rosler KM, Truffert A, Myers JP (1998) Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain 121(Pt 3): 437–450Google Scholar
  25. 25.
    Magistris MR, Rosler KM, Truffert A, Landis T, Hess CW (1999) A clinical study of motor evoked potentials using a triple stimulation technique. Brain 122(Pt 2): 265–279PubMedCrossRefGoogle Scholar
  26. 26.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113PubMedCrossRefGoogle Scholar
  27. 27.
    Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33: 1444–1452PubMedGoogle Scholar
  28. 28.
    Cutter GR, Baier ML, Rudick RA, Cookfair DL, Fischer JS, Petkau J, Syndulko K, Weinshenker BG, Antel JP, Confavreux C, Ellison GW, Lublin F, Miller AE, Rao SM, Reingold S, Thompson A, Willoughby E (1999) Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122(Pt 5): 871–882PubMedCrossRefGoogle Scholar
  29. 29.
    Fischer JS, Rudick RA, Cutter GR, Reingold SC (1999) The Multiple Sclerosis Functional Composite Measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS Society Clinical Outcomes Assessment Task Force. Mult Scler 5: 244–250Google Scholar
  30. 30.
    Attarian S, Azulay JP, Lardillier D, Verschueren A, Pouget J (2005) Transcranial magnetic stimulation in lower motor neuron diseases. Clin Neurophysiol 116: 35–42PubMedCrossRefGoogle Scholar
  31. 31.
    Caramia MD, Cicinelli P, Paradiso C, Mariorenzi R, Zarola F, Bernardi G, Rossini PM (1991) Excitability changes of muscular responses to magnetic brain stimulation in patients with central motor disorders. Electroencephalogr Clin Neurophysiol 81: 243–250PubMedCrossRefGoogle Scholar
  32. 32.
    Triggs WJ, Menkes D, Onorato J, Yan RS, Young MS, Newell K, Sander HW, Soto O, Chiappa KH, Cros D (1999) Transcranial magnetic stimulation identifies upper motor neuron involvement in motor neuron disease. Neurology 53: 605–611PubMedGoogle Scholar
  33. 33.
    Rossini PM, Di Stefano E, Stanzione P (1985) Nerve impulse propagation along central and peripheral fast conducting motor and sensory pathways in man. Electroencephalogr Clin Neurophysiol 60: 320–334PubMedCrossRefGoogle Scholar
  34. 34.
    Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999) Multisubject fMRI studies and conjunction analyses. Neuroimage 10: 385–396PubMedCrossRefGoogle Scholar
  35. 35.
    Brett M (2000) Converting MNI coordinates to Talairach coordinates.
  36. 36.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58: 840–846PubMedCrossRefGoogle Scholar
  37. 37.
    Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31: 889–901PubMedCrossRefGoogle Scholar
  38. 38.
    Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6: 342–353PubMedCrossRefGoogle Scholar
  39. 39.
    Paus T, Petrides M, Evans AC, Meyer E (1993) Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. J Neurophysiol 70: 453–469PubMedGoogle Scholar
  40. 40.
    Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ (1992) Impaired mesial frontal and putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 32: 151–161PubMedCrossRefGoogle Scholar
  41. 41.
    Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14: 3775–3790PubMedGoogle Scholar
  42. 42.
    Playford ED, Jenkins IH, Passingham RE, Frackowiak RS, Brooks DJ (1993) Impaired activation of frontal areas during movement in Parkinson’s disease: a PET study. Adv Neurol 60: 506–510PubMedGoogle Scholar
  43. 43.
    Zatorre RJ, Evans AC, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14: 1908–1919PubMedGoogle Scholar
  44. 44.
    Petrides M, Alivisatos B, Evans AC, Meyer E (1993) Dissociation of human mid-dorsolateral from posterior dorsolateral frontal cortex in memory processing. Proc Natl Acad Sci USA 90: 873–877PubMedCrossRefGoogle Scholar

Copyright information

© ESMRMB 2010

Authors and Affiliations

  • Audrey Rico
    • 1
    • 2
    Email author
  • Wafaa Zaaraoui
    • 1
  • Jerome Franques
    • 3
  • Shahram Attarian
    • 3
  • Françoise Reuter
    • 1
    • 2
  • Irina Malikova
    • 1
    • 2
  • Sylviane Confort-Gouny
    • 1
  • Elisabeth Soulier
    • 1
  • Jean Pouget
    • 3
  • Patrick J. Cozzone
    • 1
  • Jean Pelletier
    • 1
    • 2
  • Jean-Philippe Ranjeva
    • 1
  • Bertrand Audoin
    • 1
    • 2
  1. 1.Centre de Résonance Magnétique Biologique et Médicale UMR CNRS 6612 Facultéde MédecineUniversité de la MéditerranéeMarseilleFrance
  2. 2.Pôle de Neurosciences Cliniques, Service de NeurologieCentre Hospitalier Universitaire TimoneMarseilleFrance
  3. 3.Pôle de Neurosciences Cliniques, Service de Neurologie et des pathologies neuromusculairesCentre Hospitalier Universitaire TimoneMarseilleFrance

Personalised recommendations