Real-time MR navigation and localization of an intravascular catheter with ferromagnetic components

  • Ke Zhang
  • Axel Joachim Krafft
  • Reiner Umathum
  • Florian Maier
  • Wolfhard Semmler
  • Michael Bock
Research Article

Abstract

Object

To develop an intravascular catheter with ferromagnetic components that is navigated with MR gradient forces and imaged with dedicated MR sequences in real time.

Materials and methods

The orientation of a device with ferromagnetic components can be controlled by gradient forces. In this work, a 3D input device for interactive real-time control of the force gradient was combined with a dedicated real-time MR pulse sequence. The pulse sequence offered acquisition of FLASH images, force gradient and localization of the ferromagnetic tip with three projections. The technique for localization is a combination of off-set resonance excitation and gradient rephasing. According to the position of the ferromagnetic components from the projections, the imaging slice is automatically aligned with the ferromagnetic component. The navigation methods and localization techniques were assessed in phantom and animal studies.

Results

At a reaction time of 24 ms and a frame rate of one image per second, the orientation of a ferromagnetic catheter could be navigated in a complex vascular phantom. The magnetic force generated by a gradient of 28 mT/m could reach up to 100±20 μN. The localization of the ferromagnetic tip could be performed with an uncertainty of 1 mm in phantom studies and 4 mm in animal studies.

Conclusion

The use of a deflectable catheter with a ferromagnetic tip to target the blood vessels and localize the position of device provides a novel method to use the MR system to image the anatomy and steer an interventional device which helps to increase the precision and speed of endovascular procedures.

Keywords

(MeSH terms): Magnetic resonance imaging (E01.370.350.500 and E01.370.350.825.500) Radiology interventional (G02.403.776.700.675) Navigation (E02.148 and E05.157) Magnetic force Real-time image acquisition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lufkin RB, Gronemeyer DH, Seibel RM (1997) Interventional MRI: update. Eur Radiol 7(Suppl 5): 187–200CrossRefPubMedGoogle Scholar
  2. 2.
    Kos S, Huegli R, Bongartz GM, Jacob AL, Bilecen D (2008) MR-guided endovascular interventions: a comprehensive review on techniques and applications. Eur Radiol 18(4): 645–657CrossRefPubMedGoogle Scholar
  3. 3.
    Vinuela F, Duckwiler G, Mawad M (1997) Guglielmi detachable coil embolization of acute intracranial aneurysm: perioperative anatomical and clinical outcome in 403 patients. J Neurosurg 86(3): 475–482CrossRefPubMedGoogle Scholar
  4. 4.
    McDougall CG, Halbach VV, Dowd CF, Higashida RT, Larsen DW, Hieshima GB (1998) Causes and management of aneurysmal hemorrhage occurring during embolization with Guglielmi detachable coils. J Neurosurg 89(1): 87–92CrossRefPubMedGoogle Scholar
  5. 5.
    Duerk JL, Wong EY, Lewin JS (2002) A brief review of hardware for catheter tracking in magnetic resonance imaging. Magn Reson Mater Phy 13(3): 199–208CrossRefGoogle Scholar
  6. 6.
    Bock M, Volz S, Zuhlsdorff S, Umathum R, Fink C, Hallscheidt P, Semmler W (2004) MR-guided intravascular procedures: real-time parameter control and automated slice positioning with active tracking coils. J Magn Reson Imaging 19(5): 580–589CrossRefPubMedGoogle Scholar
  7. 7.
    Roberts TP, Hassenzahl WV, Hetts SW, Arenson RL (2002) Remote control of catheter tip deflection: an opportunity for interventional MRI. Magn Reson Med 48(6): 1091–1095CrossRefPubMedGoogle Scholar
  8. 8.
    Martin AJ, Baek B, Acevedo-Bolton G, Higashida RT, Comstock J, Saloner DA (2009) MR imaging during endovascular procedures: an evaluation of the potential for catheter heating. Magn Reson Med 61(1): 45–53CrossRefPubMedGoogle Scholar
  9. 9.
    Homagk AK, Umathum R, Korn M, Weber MA, Hallscheidt P, Semmler W, Bock M (2010) An expandable catheter loop coil for intravascular MRI in larger blood vessels. Magn Reson Med 63(2): 517–523CrossRefPubMedGoogle Scholar
  10. 10.
    Sylvain M, Jean-Baptiste M, Ouajdi F, Arnaud C, Eric A, Samer T, Pierre P, L’Hocine Y, Gilles B, Gilles S, Martin M (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11): 114105CrossRefGoogle Scholar
  11. 11.
    Felfoul O, Mathieu JB, Beaudoin G, Martel S (2008) In vivo MR-tracking based on magnetic signature selective excitation. IEEE Trans Med Imaging 27(1): 28–35CrossRefPubMedGoogle Scholar
  12. 12.
    Chanu A, Felfoul O, Beaudoin G, Martel S (2008) Adapting the clinical MRI software environment for real-time navigation of an endovascular untethered ferromagnetic bead for future endovascular interventions. Magn Reson Med 59(6): 1287–1297CrossRefPubMedGoogle Scholar
  13. 13.
    Tamaz S, Gourdeau R, Chanu A, Mathieu JB, Martel S (2008) Real-time MRI-based control of a ferromagnetic core for endovascular navigation. IEEE Trans Biomed Eng 55(7): 1854–1863CrossRefPubMedGoogle Scholar
  14. 14.
    Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5): 999–1005CrossRefPubMedGoogle Scholar
  15. 15.
    Zurkiya O, Hu X (2006) Off-resonance saturation as a means of generating contrast with superparamagnetic nanoparticles. Magn Reson Med 56(4): 726–732CrossRefPubMedGoogle Scholar
  16. 16.
    Stuber M, Gilson WD, Schar M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58(5): 1072–1077CrossRefPubMedGoogle Scholar
  17. 17.
    Seppenwoolde JH, Viergever MA, Bakker CJ (2003) Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 50(4): 784–790CrossRefPubMedGoogle Scholar
  18. 18.
    Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T (2008) Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 60(3): 595–603CrossRefPubMedGoogle Scholar
  19. 19.
    Mathieu JB, Martel S, Yahia L, Soulez G, Beaudoin G (2005) Preliminary investigation of the feasibility of magnetic propulsion for future microdevices in blood vessels. Biomed Mater Eng 15(5): 367–374PubMedGoogle Scholar
  20. 20.
    Mathieu JB, Beaudoin G, Martel S (2006) Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans Biomed Eng 53(2): 292–299CrossRefPubMedGoogle Scholar
  21. 21.
    Cavalcanti A, Freitas RA Jr (2005) Nanorobotics control design: a collective behavior approach for medicine. IEEE Trans Nanobiosci 4(2): 133–140CrossRefGoogle Scholar
  22. 22.
    Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA (2009) SEMAC: Slice Encoding for Metal Artifact Correction in MRI. Magn Reson Med 62(1): 66–76CrossRefPubMedGoogle Scholar
  23. 23.
    Butts K, Pauly JM, Gold GE (2005) Reduction of blurring in view angle tilting MRI. Magn Reson Med 53(2): 418–424CrossRefPubMedGoogle Scholar
  24. 24.
    Bock M, Muller S, Zuehlsdorff S, Speier P, Fink C, Hallscheidt P, Umathum R, Semmler W (2006) Active catheter tracking using parallel MRI and real-time image reconstruction. Magn Reson Med 55(6): 1454–1459CrossRefPubMedGoogle Scholar
  25. 25.
    Muller S, Umathum R, Speier P, Zuhlsdorff S, Ley S, Semmler W, Bock M (2006) Dynamic coil selection for real-time imaging in interventional MRI. Magn Reson Med 56(5): 1156–1162CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2010

Authors and Affiliations

  • Ke Zhang
    • 1
  • Axel Joachim Krafft
    • 1
  • Reiner Umathum
    • 1
  • Florian Maier
    • 1
  • Wolfhard Semmler
    • 1
  • Michael Bock
    • 1
  1. 1.German Cancer Research Center (DKFZ)Medical Physics in Radiology (E020)HeidelbergGermany

Personalised recommendations