Increased sleep pressure reduces resting state functional connectivity

  • Philipp G. Sämann
  • Carolin Tully
  • Victor I. Spoormaker
  • Thomas C. Wetter
  • Florian Holsboer
  • Renate Wehrle
  • Michael Czisch
Research Article



In humans, even a single night of partial sleep deprivation (PSD) can have a negative impact on cognition and affective processing, suggesting that sleep pressure represents a basic physiological constraint of brain function. Among the spontaneously fluctuating resting state networks, the default mode network (DMN) and its anticorrelated network (ACN) hold key functions in segregating internally and externally directed awareness. Task fMRI after sleep deprivation has revealed altered activation patterns in both networks. We hypothesized that effects of PSD in these intrinsically coupled networks can be detected by resting state fMRI.


We obtained 6-minute echoplanar imaging time series (1.5 Tesla) during eyes-closed, wakeful-resting experiments from 16 healthy volunteers after normal sleep and after PSD. We used independent component and cross-correlation analysis to study functional connectivity (fc), focusing on the DMN and ACN.


After PSD, focal reductions of auto-correlation strength were detected in the posterior and anterior midline node of the DMN and in the lateral parietal and insular nodes of the ACN. Cross-correlation analysis confirmed reduced cortico-cortical connectivity within and between the DMN and ACN.


Increased sleep pressure is reflected in reduced fc of main DMN and ACN nodes during rest. Results have implications for understanding perceptual and cognitive changes after sleep deprivation and are relevant to clinical studies on conditions in which increased sleep propensity is present.


Default mode network Functional connectivity FMRI Sleep deprivation Vigilance Attention system 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bruns A, Eckhorn R, Jokeit H, Ebner A (2000) Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11(7): 1509–1514CrossRefPubMedGoogle Scholar
  2. 2.
    Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2(10): 704–716CrossRefPubMedGoogle Scholar
  3. 3.
    Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425(6961): 954–956CrossRefPubMedGoogle Scholar
  4. 4.
    Grinvald A, Arieli A, Tsodyks M, Kenet T (2003) Neuronal assemblies: single cortical neurons are obedient members of a huge orchestra. Biopolymers 68(3): 422–436CrossRefPubMedGoogle Scholar
  5. 5.
    Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13(4): 422–433CrossRefPubMedGoogle Scholar
  6. 6.
    Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679): 1926–1929CrossRefPubMedGoogle Scholar
  7. 7.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9): 700–711CrossRefPubMedGoogle Scholar
  8. 8.
    Auer DP (2008) Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging 26(7): 1055– 1064CrossRefPubMedGoogle Scholar
  9. 9.
    Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103(37): 13848–13853CrossRefPubMedGoogle Scholar
  10. 10.
    Biswal BB, Van Kylen J, Hyde JS (1997) Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed 10(4-5): 165–170CrossRefPubMedGoogle Scholar
  11. 11.
    Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann NY Acad Sci 1124: 1–38CrossRefPubMedGoogle Scholar
  12. 12.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98(2): 676–682CrossRefPubMedGoogle Scholar
  13. 13.
    Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27): 9673–9678CrossRefPubMedGoogle Scholar
  14. 14.
    Mason MF, Norton MI, Van Horn JD, Wegner DM, Grafton ST, Macrae CN (2007) Wandering minds: the default network and stimulus-independent thought. Science 315(5810): 393–395CrossRefPubMedGoogle Scholar
  15. 15.
    Cabeza R, Nyberg L (2000) Imaging cognition II: an empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12(1): 1–47CrossRefPubMedGoogle Scholar
  16. 16.
    Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103(26): 10046–10051CrossRefPubMedGoogle Scholar
  17. 17.
    Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3): 201–215CrossRefPubMedGoogle Scholar
  18. 18.
    Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6): 671–682CrossRefPubMedGoogle Scholar
  19. 19.
    Greicius MD, Menon V (2004) Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci 16(9): 1484–1492CrossRefPubMedGoogle Scholar
  20. 20.
    Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19(1): 72–78CrossRefPubMedGoogle Scholar
  21. 21.
    Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci USA 106(27): 11376–11381CrossRefPubMedGoogle Scholar
  22. 22.
    Sämann PG, Wehrle R, Spoormaker V, Hoehn D, Peters H, Holsboer F, Czisch M (2009) Development of the brain default mode network from wakefulness into slow wave sleep. Proceedings 17th scientific meeting, international society for magnetic resonance in medicine p 126Google Scholar
  23. 23.
    Larson-Prior LJ, Zempel JM, Nolan TS, Prior FW, Snyder AZ, Raichle ME (2009) Cortical network functional connectivity in the descent to sleep. Proc Natl Acad Sci USA 106(11): 4489–4494CrossRefPubMedGoogle Scholar
  24. 24.
    Damoiseaux JS, Beckmann CF, Arigita EJ, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SA (2008) Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex 18(8): 1856–1864CrossRefPubMedGoogle Scholar
  25. 25.
    Greicius MD, Kiviniemi V, Tervonen O, Vainionpaa V, Alahuhta S, Reiss AL, Menon V (2008) Persistent default-mode network connectivity during light sedation. Hum Brain Mapp 29(7): 839–847CrossRefPubMedGoogle Scholar
  26. 26.
    Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33(3): 279–296CrossRefPubMedGoogle Scholar
  27. 27.
    Sorg C, Riedl V, Muhlau M, Calhoun VD, Eichele T, Laer L, Drzezga A, Forstl H, Kurz A, Zimmer C, Wohlschlager AM (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA 104(47): 18760–18765CrossRefPubMedGoogle Scholar
  28. 28.
    Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci USA 101(13): 4637–4642CrossRefPubMedGoogle Scholar
  29. 29.
    Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, Reiss AL, Schatzberg AF (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62(5): 429–437CrossRefPubMedGoogle Scholar
  30. 30.
    Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 106(6): 1942–1947CrossRefPubMedGoogle Scholar
  31. 31.
    Boly M, Phillips C, Tshibanda L, Vanhaudenhuyse A, Schabus M, Dang-Vu TT, Moonen G, Hustinx R, Maquet P, Laureys S (2008) Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function?. Ann NY Acad Sci 1129: 119–129CrossRefPubMedGoogle Scholar
  32. 32.
    Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, Luxen A, Phillips C, Peigneux P, Maquet P, Laureys S (2007) Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104(29): 12187–12192CrossRefPubMedGoogle Scholar
  33. 33.
    Mullington JM, Haack M, Toth M, Serrador JM, Meier-Ewert HK (2009) Cardiovascular, inflammatory, and metabolic consequences of sleep deprivation. Prog Cardiovasc Dis 51(4): 294–302CrossRefPubMedGoogle Scholar
  34. 34.
    Durmer JS, Dinges DF (2005) Neurocognitive consequences of sleep deprivation. Semin Neurol 25(1): 117–129CrossRefPubMedGoogle Scholar
  35. 35.
    Tomasi D, Wang RL, Telang F, Boronikolas V, Jayne MC, Wang GJ, Fowler JS, Volkow ND (2009) Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex 19(1): 233–240CrossRefPubMedGoogle Scholar
  36. 36.
    Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, Russo MB, Balkin TJ (2003) Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res 12(1): 1–12CrossRefPubMedGoogle Scholar
  37. 37.
    Giedke H, Schwarzler F (2002) Therapeutic use of sleep deprivation in depression. Sleep Med Rev 6(5): 361–377PubMedGoogle Scholar
  38. 38.
    Drummond SP, Brown GG, Gillin JC, Stricker JL, Wong EC, Buxton RB (2000) Altered brain response to verbal learning following sleep deprivation. Nature 403(6770): 655–657CrossRefPubMedGoogle Scholar
  39. 39.
    Drummond SP, Brown GG, Stricker JL, Buxton RB, Wong EC, Gillin JC (1999) Sleep deprivation-induced reduction in cortical functional response to serial subtraction. Neuroreport 10(18): 3745–3748CrossRefPubMedGoogle Scholar
  40. 40.
    Chee MW, Choo WC (2004) Functional imaging of working memory after 24 h of total sleep deprivation. J Neurosci 24(19): 4560–4567CrossRefPubMedGoogle Scholar
  41. 41.
    Choo WC, Lee WW, Venkatraman V, Sheu FS, Chee MW (2005) Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. Neuroimage 25(2): 579–587CrossRefPubMedGoogle Scholar
  42. 42.
    Mu Q, Mishory A, Johnson KA, Nahas Z, Kozel FA, Yamanaka K, Bohning DE, George MS (2005) Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep 28(4): 433–446PubMedGoogle Scholar
  43. 43.
    Drummond SP, Brown GG, Salamat JS, Gillin JC (2004) Increasing task difficulty facilitates the cerebral compensatory response to total sleep deprivation. Sleep 27(3): 445–451PubMedGoogle Scholar
  44. 44.
    Drummond SP, Meloy MJ, Yanagi MA, Orff HJ, Brown GG (2005) Compensatory recruitment after sleep deprivation and the relationship with performance. Psychiatry Res 140(3): 211–223CrossRefPubMedGoogle Scholar
  45. 45.
    Drummond SP, Bischoff-Grethe A, Dinges DF, Ayalon L, Mednick SC, Meloy MJ (2005) The neural basis of the psychomotor vigilance task. Sleep 28(9): 1059–1068PubMedGoogle Scholar
  46. 46.
    Ma L, Wang B, Chen X, Xiong J (2007) Detecting functional connectivity in the resting brain: a comparison between ICA and CCA. Magn Reson Imaging 25(1): 47–56CrossRefPubMedGoogle Scholar
  47. 47.
    Wittchen HU, Lachner G, Wunderlich U, Pfister H (1998) Test-retest reliability of the computerized DSM-IV version of the Munich-Composite International Diagnostic Interview (M-CIDI). Soc Psychiatry Psychiatr Epidemiol 33(11): 568–578CrossRefPubMedGoogle Scholar
  48. 48.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1): 97–113CrossRefPubMedGoogle Scholar
  49. 49.
    Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28(2): 193–213CrossRefPubMedGoogle Scholar
  50. 50.
    Hayasaka S, Phan KL, Liberzon I, Worsley KJ, Nichols TE (2004) Nonstationary cluster-size inference with random field and permutation methods. Neuroimage 22(2): 676–687CrossRefPubMedGoogle Scholar
  51. 51.
    Silber MH, Ancoli-Israel S, Bonnet MH, Chokroverty S, Grigg-Damberger MM, Hirshkowitz M, Kapen S, Keenan SA, Kryger MH, Penzel T, Pressman MR, Iber C (2007) The visual scoring of sleep in adults. J Clin Sleep Med 3(2): 121–131PubMedGoogle Scholar
  52. 52.
    Strijkstra AM, Beersma DG, Drayer B, Halbesma N, Daan S (2003) Subjective sleepiness correlates negatively with global alpha (8–12 Hz) and positively with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neurosci Lett 340(1): 17–20CrossRefPubMedGoogle Scholar
  53. 53.
    Finelli LA, Baumann H, Borbely AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101(3): 523–529CrossRefPubMedGoogle Scholar
  54. 54.
    Cajochen C, Brunner DP, Krauchi K, Graw P, Wirz-Justice A (1995) Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 18(10): 890–894PubMedGoogle Scholar
  55. 55.
    van den BJ, Neely G, Nilsson L, Knutsson A, Landstrom U (2005) Electroencephalography and subjective ratings of sleep deprivation. Sleep Med 6(3): 231–240CrossRefGoogle Scholar
  56. 56.
    Vogt BA, Laureys S (2005) Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Prog Brain Res 150: 205–217CrossRefPubMedGoogle Scholar
  57. 57.
    Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, Wagner H, Thorne D, Popp K, Rowland L, Welsh A, Balwinski S, Redmond D (2000) Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 9(4): 335–352CrossRefPubMedGoogle Scholar
  58. 58.
    Killgore WD (2007) Effects of sleep deprivation and morningness-eveningness traits on risk-taking. Psychol Rep 100(2): 613–626CrossRefPubMedGoogle Scholar
  59. 59.
    Mayberg HS (2003) Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 13(4): 805–815CrossRefPubMedGoogle Scholar
  60. 60.
    Pizzagalli DA, Oakes TR, Davidson RJ (2003) Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects. Psychophysiology 40(6): 939–949CrossRefPubMedGoogle Scholar
  61. 61.
    Pizzagalli D, Pascual-Marqui RD, Nitschke JB, Oakes TR, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Benca RM, Davidson RJ (2001) Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. Am J Psychiatry 158(3): 405–415CrossRefPubMedGoogle Scholar
  62. 62.
    Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?. Neuroimage 44(3): 893–905CrossRefPubMedGoogle Scholar
  63. 63.
    Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101(6): 3270–3283CrossRefPubMedGoogle Scholar
  64. 64.
    Esposito F, Bertolino A, Scarabino T, Latorre V, Blasi G, Popolizio T, Tedeschi G, Cirillo S, Goebel R, Di Salle F (2006) Independent component model of the default-mode brain function: Assessing the impact of active thinking. Brain Res Bull 70(4-6): 263–269CrossRefPubMedGoogle Scholar
  65. 65.
    Cajochen C, Wyatt JK, Czeisler CA, Dijk DJ (2002) Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness. Neuroscience 114(4): 1047–1060PubMedGoogle Scholar

Copyright information

© ESMRMB 2010

Authors and Affiliations

  • Philipp G. Sämann
    • 1
  • Carolin Tully
    • 1
  • Victor I. Spoormaker
    • 1
  • Thomas C. Wetter
    • 1
    • 2
  • Florian Holsboer
    • 1
  • Renate Wehrle
    • 1
    • 3
  • Michael Czisch
    • 1
  1. 1.Max Planck Institute of PsychiatryNeuroimaging Research GroupMunichGermany
  2. 2.University Hospital of PsychiatryUniversity of ZurichZurichSwitzerland
  3. 3.Institute of Pharmacology and ToxicologyUniversity of ZurichZurichSwitzerland

Personalised recommendations