Quantitative metabolic profiles of 2nd and 3rd trimester human amniotic fluid using 1H HR-MAS spectroscopy

  • Brad R. Cohn
  • Bonnie N. Joe
  • Shoujun Zhao
  • John Kornak
  • Vickie Y. Zhang
  • Rahwa Iman
  • John Kurhanewicz
  • Kiarash Vahidi
  • Jingwei Yu
  • Aaron B. Caughey
  • Mark G. Swanson
Open Access
Research Article



To establish and compare normative metabolite concentrations in 2nd and 3rd trimester human amniotic fluid samples in an effort to reveal metabolic biomarkers of fetal health and development.

Materials and methods

Twenty-one metabolite concentrations were compared between 2nd (15–27 weeks gestation, N = 23) and 3rd (29–39 weeks gestation, N = 27) trimester amniotic fluid samples using 1H high resolution magic angle spinning (HR-MAS) spectroscopy. Data were acquired using the electronic reference to access in vivo concentrations method and quantified using a modified semi-parametric quantum estimation algorithm modified for high-resolution ex vivo data.


Sixteen of 21 metabolite concentrations differed significantly between 2nd and 3rd trimester groups. Betaine (0.00846±0.00206 mmol/kg vs. 0.0133±0.0058 mmol/kg, P < 0.002) and creatinine (0.0124±0.0058 mmol/kg vs. 0.247±0.011 mmol/kg, P < 0.001) concentrations increased significantly, while glucose (5.96±1.66 mmol/kg vs. 2.41±1.69 mmol/kg, P < 0.001), citrate (0.740±0.217 mmol/kg vs. 0.399±0.137 mmol/kg, P < 0.001), pyruvate (0.0659±0.0103 mmol/kg vs. 0.0299±0.286 mmol/kg, P < 0.001), and numerous amino acid (e.g. alanine, glutamate, isoleucine, leucine, lysine, and valine) concentrations decreased significantly with advancing gestation. A stepwise multiple linear regression model applied to 50 samples showed that gestational age can be accurately predicted using combinations of alanine, glucose and creatinine concentrations.


These results provide key normative data for 2nd and 3rd trimester amniotic fluid metabolite concentrations and provide the foundation for future development of magnetic resonance spectroscopy (MRS) biomarkers to evaluate fetal health and development.


Electronic reference to access in vivo concentrations (ERETIC) Gestational age High-resolution magic angle spinning (HR-MAS) Spectroscopy High-resolution quantum estimation (HR-QUEST) Human amniotic fluid 


  1. 1.
    McGowan PE, Reglinski J, Wilson R, Walker JJ, Wisdoms S, McKillop JH (1993) Quantitative 1H-NMR analysis of amniotic fluid. J Pharm Biomed Anal 11(8): 629–632CrossRefPubMedGoogle Scholar
  2. 2.
    Fenton BW, Lin CS, Ascher S, Macedonia C (2000) Magnetic resonance spectroscopy to detect lecithin in amniotic fluid and fetal lung. Obstet Gynecol 95(3): 457–460CrossRefPubMedGoogle Scholar
  3. 3.
    Clifton MS, Joe BN, Zektzer AS, Kurhanewicz J, Vigneron DB, Coakley FV, Nobuhara KK, Swanson MG (2006) Feasibility of magnetic resonance spectroscopy for evaluating fetal lung maturity. J Pediatr Surg 41(4): 768–773CrossRefPubMedGoogle Scholar
  4. 4.
    Nelson TR, Gillies RJ, Powell DA, Schrader MC, Manchester DK, Pretorius DH (1987) High resolution proton NMR spectroscopy of human amniotic fluid. Prenat Diagn 7(5): 363–372CrossRefPubMedGoogle Scholar
  5. 5.
    Pearce JM, Komoroski RA (1993) Resolution of phospholipid molecular species by 31P NMR. Magn Reson Med 29(6): 724–731CrossRefPubMedGoogle Scholar
  6. 6.
    Pearce JM, Krone JT, Pappas AA, Komoroski RA (1993) Analysis of saturated phosphatidylcholine in amniotic fluid by 31P NMR. Magn Reson Med 30(4): 476–484CrossRefPubMedGoogle Scholar
  7. 7.
    Pearce JM, Shifman MA, Pappas AA, Komoroski RA (1991) Analysis of phospholipids in human amniotic fluid by 31P NMR. Magn Reson Med 21(1): 107–116CrossRefPubMedGoogle Scholar
  8. 8.
    Bock JL (1994) Metabolic profiling of amniotic fluid by proton nuclear magnetic resonance spectroscopy: correlation with fetal maturation and other clinical variables. Clin Chem 40(1): 56–61PubMedGoogle Scholar
  9. 9.
    Sims CJ, Fujito DT, Burholt DR, Dadok J, Giles HR, Wilkinson DA (1993) Quantification of human amniotic fluid constituents by high resolution proton nuclear magnetic resonance (NMR) spectroscopy. Prenat Diagn 13(6): 473–480CrossRefPubMedGoogle Scholar
  10. 10.
    McGowan PE, Lawrie WC, Reglinski J, Spickett CM, Wilson R, Walker JJ, Wisdom S, Maclean MA (1999) 1H NMR as a non-invasive probe of amniotic fluid in insulin dependent diabetes mellitus. J Perinat Med 27(5): 404–408CrossRefPubMedGoogle Scholar
  11. 11.
    Roopnarinesingh S, Morris D (1971) Amniotic fluid urea and creatinine in normal pregnancy and in pre-eclampsia. J Obstet Gynaecol Br Commonw 78(1): 29–33PubMedGoogle Scholar
  12. 12.
    Romero R, Jimenez C, Lohda AK, Nores J, Hanaoka S, Avila C, Callahan R, Mazor M, Hobbins JC, Diamond MP (1990) Amniotic fluid glucose concentration: a rapid and simple method for the detection of intraamniotic infection in preterm labor. Am J Obstet Gynecol 163(3): 968–974PubMedGoogle Scholar
  13. 13.
    Groenen PM, Engelke UF, Wevers RA, Hendriks JC, Eskes TK, Merkus HM, Steegers-Theunissen RP (2004) High-resolution 1H NMR spectroscopy of amniotic fluids from spina bifida fetuses and controls. Eur J Obstet Gynecol Reprod Biol 112(1): 16–23CrossRefPubMedGoogle Scholar
  14. 14.
    Le Moyec L, Muller F, Eugene M, Spraul M (1994) Proton magnetic resonance spectroscopy of human amniotic fluids sampled at 17–18 weeks of pregnancy in cases of decreased digestive enzyme activities and detected cystic fibrosis. Clin Biochem 27(6): 475–483CrossRefPubMedGoogle Scholar
  15. 15.
    Joe BN, Swanson MG, Zektzer AS, Kurhanewicz J, Qayyum A, Coakley FV, Yeh BM (2005) Non-invasive evaluation of fetal lung maturity by MR spectroscopy: a preliminary ex-vivo investigation. Am J Roentgenol 184(4): 16–17Google Scholar
  16. 16.
    Joe BN, Vahidi K, Zektzer A, Chen MH, Clifton MS, Butler T, Keshari K, Kurhanewicz J, Coakley F, Swanson MG (2008) H-1 HR-MAS spectroscopy for quantitative measurement of choline concentration in amniotic fluid as a marker of fetal lung maturity: inter-and intraobserver reproducibility study. J Magn Reson Imaging 28(6): 1540–1545CrossRefPubMedGoogle Scholar
  17. 17.
    Graca G, Duarte IF, Goodfellow BJ, Barros AS, Carreira IM, Couceiro AB, Spraul M, Gil AM (2007) Potential of NMR spectroscopy for the study of human amniotic fluid. Anal Chem 79(21): 8367–8375CrossRefPubMedGoogle Scholar
  18. 18.
    Kriat M, Confortgouny S, Viondury J, Sciaky M, Viout P, Cozzone PJ (1992) Quantitation of metabolites in human blood serum by proton magnetic resonance spectroscopy—a comparative study of the use of formate and TSP as concentration standards. NMR Biomed 5(4): 179–184CrossRefPubMedGoogle Scholar
  19. 19.
    Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128(8): 2571–2576CrossRefPubMedGoogle Scholar
  20. 20.
    Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71(13): 2554–2557CrossRefGoogle Scholar
  21. 21.
    Albers MJ, Butler TN, Rahwa I, Bao N, Keshari KR, Swanson MG, Kurhanewicz J (2009) Evaluation of the ERETIC method as an improved quantitative reference for H-1 HR-MAS spectroscopy of prostate tissue. Magn Reson Med 61(3): 525–532CrossRefPubMedGoogle Scholar
  22. 22.
    Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D (2005) Time-domain semi-parametric estimation based on a metabolite basis set. NMR Biomed 18(1): 1–13CrossRefPubMedGoogle Scholar
  23. 23.
    Rabeson H, Fauvelle F, Testylier G, Foquin A, Carpentier P, Dorandeu F, van Ormondt D, Graveron-Demilly D (2008) Quantitation with QUEST of brain HRMAS-NMR signals: application to metabolic disorders in experimental epileptic seizures. Magn Reson Med 59(6): 1266–1273CrossRefPubMedGoogle Scholar
  24. 24.
    Holmes E, Foxall PJ, Spraul M, Farrant RD, Nicholson JK, Lindon JC (1997) 750 MHz 1H NMR spectroscopy characterisation of the complex metabolic pattern of urine from patients with inborn errors of metabolism: 2-hydroxyglutaric aciduria and maple syrup urine disease. J Pharm Biomed Anal 15(11): 1647–1659CrossRefPubMedGoogle Scholar
  25. 25.
    Uyeno D (1919) The physical properties and chemical composition of human amniotic fluid. J Biol Chem 37(1): 77–103Google Scholar
  26. 26.
    Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55(6): 1257–1264CrossRefPubMedGoogle Scholar
  27. 27.
    Becker ED (2000) High resolution NMR: theory and chemical applications. Academic Press, San DiegoGoogle Scholar
  28. 28.
    Kuchel PW, Chapman BE, Bubb WA, Hansen PE, Durrant CJ, Hertzberg MP (2003) Magnetic susceptibility: solutions, emulsions, and cells. Concepts Magn Reson A 18(1): 56–71CrossRefGoogle Scholar
  29. 29.
    Mo HP, Raftery D (2008) Improved residual water suppression: WET180. J Biomol NMR 41(2): 105–111CrossRefPubMedGoogle Scholar
  30. 30.
    Remaud GS, Silvestre V, Akoka S (2005) Traceability in quantitative NMR using an electronic signal as working standard. Accredit Qual Assur 10(8): 415–420CrossRefGoogle Scholar
  31. 31.
    Rabenstein DL, Keire DA (1991) Quantitative chemical analysis by NMR. In: Popov IA, Halenga K (eds) Modern NMR techniques and their application in chemistry. Marcel Dekker, New York, pp 323–369Google Scholar
  32. 32.
    Griffin JL, Bollard M, Nicholson JK, Bhakoo K (2002) Spectral profiles of cultured neuronal and glial cells derived from HRMAS H-1 NMR spectroscopy. NMR Biomed 15(6): 375–384CrossRefPubMedGoogle Scholar
  33. 33.
    Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14: 260–264CrossRefPubMedGoogle Scholar
  34. 34.
    Poullet JB, Sima DM, Van Huffel S (2008) MRS signal quantitation: a review of time- and frequency-domain methods. J Magn Reson 195(2): 134–144CrossRefPubMedGoogle Scholar
  35. 35.
    Brown JC, Mills GA, Sadler PJ, Walker V (1989) 1H NMR studies of urine from premature and sick babies. Magn Reson Med 11(2): 193–201CrossRefPubMedGoogle Scholar
  36. 36.
    Lauridsen M, Hansen SH, Jaroszewski JW, Cornett C (2007) Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage. Anal Chem 79(3): 1181–1186CrossRefPubMedGoogle Scholar
  37. 37.
    Teahan O, Gamble S, Holmes E, Waxman J, Nicholson JK, Bevan C, Keun HC (2006) Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal Chem 78(13): 4307–4318CrossRefPubMedGoogle Scholar
  38. 38.
    Friesen RW, Novak EM, Hasman D, Innis SM (2007) Relationship of dimethylglycine, choline, and betaine with oxoproline in plasma of pregnant women and their newborn infants. J Nutr 137(12): 2641–2646PubMedGoogle Scholar
  39. 39.
    Grassl SM (1994) Choline transport in human placental brush-border membrane vesicles. Biochim Biophys Acta 1194(1): 203–213CrossRefPubMedGoogle Scholar
  40. 40.
    van der Aa EM, Wouterse AC, Peereboom-Stegeman JH, Russel FG (1994) Uptake of choline into syncytial microvillus membrane vesicles of human term placenta. Biochem Pharmacol 47(3): 453–456CrossRefPubMedGoogle Scholar
  41. 41.
    Eaton BM, Sooranna SR (1998) Regulation of the choline transport system in superfused microcarrier cultures of BeWo cells. Placenta 19(8): 663–669CrossRefPubMedGoogle Scholar
  42. 42.
    Shaw GM, Carmichael SL, Yang W, Selvin S, Schaffer DM (2004) Periconceptional dietary intake of choline and betaine and neural tube defects in offspring. Am J Epidemiol 160(2): 102– 109CrossRefPubMedGoogle Scholar
  43. 43.
    Johnsen SL, Rasmussen S, Sollien R, Kiserud T (2005) Fetal age assessment based on femur length at 10–25 weeks of gestation, and reference ranges for femur length to head circumference ratios. Acta Obstet Gynecol Scan 84(8): 725–733Google Scholar
  44. 44.
    Konje JC, Abrams KR, Bell SC, Taylor DJ (2002) Determination of gestational age after the 24th week of gestation from fetal kidney length measurements. Ultrasound Obstet Gynecol 19(6): 592–597CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2009

Authors and Affiliations

  • Brad R. Cohn
    • 1
  • Bonnie N. Joe
    • 1
  • Shoujun Zhao
    • 1
  • John Kornak
    • 1
    • 2
  • Vickie Y. Zhang
    • 1
  • Rahwa Iman
    • 1
  • John Kurhanewicz
    • 1
  • Kiarash Vahidi
    • 1
  • Jingwei Yu
    • 3
  • Aaron B. Caughey
    • 4
  • Mark G. Swanson
    • 1
  1. 1.Department of Radiology & Biomedical ImagingUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of Epidemiology & BiostatisticsUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of Laboratory MedicineUniversity of CaliforniaSan FranciscoUSA
  4. 4.Department of Obstetrics & GynecologyUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations