Monitoring the survival of islet transplants by MRI using a novel technique for their automated detection and quantification

  • Daniel Jirak
  • Jan Kriz
  • Michal Strzelecki
  • Jiabi Yang
  • Craig Hasilo
  • David J. White
  • Paula J. Foster
Research Article

Abstract

Object

There is a clinical need to be able to assess graft loss of transplanted pancreatic islets (PI) non-invasively with clear-cut quantification of islet survival. We tracked transplanted PI in diabetic mice during the early post-transplant period by magnetic resonance imaging (MRI) and quantified the islet loss using automatic segmentation technique.

Materials and methods

Magnetically labeled islet iso-, allo- and xenografts were injected into the right liver lobes. Animals underwent MRI scanning during 14 days after PI transplantation. MR images were processed using custom-made software, which automatically detects hypointense regions representing PI. It is based on morphological top-hat and bottom-hat transforms.

Results

Manually and automatically detected areas, corresponding to PI, differed by 4% in phantoms. Signal loss regions due to PI decreased comparably in all groups during the first week post transplant. Throughout the second week post-transplant, the signal loss area continued in a steep decline in case of allografts and xenografts, whereas the decline in case of isografts slowed down.

Conclusion

Automatic segmentation allows for the more reproducible, objective assessment of transplanted PI. Quantification confirms the assumption that a significant number of islets are destroyed in the first week following transplantation irrespective of allografts, xenografts or isografts.

Keywords

Magnetic resonance imaging (MRI) Pancreatic islets (PI) Quantification Automatic segmentation Animal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343: 230–238PubMedCrossRefGoogle Scholar
  2. 2.
    White SA, James RF, Swift SM, Kimber RM, Nicholson ML (2001) Human islet cell transplantation—future prospects. Diabet Med 18: 78–103PubMedCrossRefGoogle Scholar
  3. 3.
    Biarnés M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E (2002) Beta-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes 51: 66–72PubMedCrossRefGoogle Scholar
  4. 4.
    Eich T, Eriksson O, Lundgren T (2007) Nordic network for clinical islet transplantation. Visualization of early engraftment in clinical islet transplantation by positron-emission tomography. N Engl J Med 356: 2754–2755PubMedCrossRefGoogle Scholar
  5. 5.
    Barshes NR, Wyllie S, Goss JA (2005) Inflammation-mediated dysfunction and apoptosis in pancreatic islet transplantation: implications for intrahepatic grafts. J Leukoc Biol 77: 587–597PubMedCrossRefGoogle Scholar
  6. 6.
    Davalli AM, Scaglia L, Zangen DH, Hollister J, Bonner-Weir S, Weir GC (1996) Vulnerability of islets in the immediate post- transplantation period. Dynamic changes in structure and function. Diabetes 45: 1161–1167PubMedCrossRefGoogle Scholar
  7. 7.
    Eich T, Eriksson O, Sundin A, Estrada S, Brandhorst D, Brandhorst H, Langstrom B, Nilsson B, Korsgren O, Lundgren T (2007) Positron emission tomography: a real-time tool to quantify early islet engraftment in a preclinical large animal model. Transplantation 84: 893–898PubMedCrossRefGoogle Scholar
  8. 8.
    Ryan EA, Paty BW, Senior PA, Bigam D, Alfadhli E, Kneteman NM, Lakey JR, Shapiro AM (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54: 2060–2069PubMedCrossRefGoogle Scholar
  9. 9.
    McAteer MA, Sibson NR, von Zur Muhlen C, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP (2007) In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 13: 1253–1258PubMedCrossRefGoogle Scholar
  10. 10.
    Hsiao JK, Tai MF, Chu HH, Chen ST, Li H, Lai DM, Hsieh ST, Wang JL, Liu HM (2007) Magnetic nanoparticle labeling of mesenchymal stem cells without transfection agent: cellular behavior and capability of detection with clinical 1.5 T magnetic resonance at the single cell level. Magn Reson Med 58: 717–724PubMedCrossRefGoogle Scholar
  11. 11.
    Oweida AJ, Dunn EA, Karlik SJ, Dekaban GA, Foster PJ (2007) Iron-oxide labeling of hematogenous macrophages in a model of experimental autoimmune encephalomyelitis and the contribution to signal loss in fast imaging employing steady state acquisition (FIESTA) images. J Magn Reson Imaging 26: 144–151PubMedCrossRefGoogle Scholar
  12. 12.
    Hauger O, Grenier N, Deminère C, Lasseur C, Delmas Y, Merville P, Combe C (2007) USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans. Eur Radiol 17: 2898–2907PubMedCrossRefGoogle Scholar
  13. 13.
    Deux JF, Dai J, Rivière C, Gazeau F, Méric P, Gillet B, Roger J, Pons JN, Letourneur D, Boudghène FP, Allaire E (2008) Aortic aneurysms in a rat model: in vivo MR imaging of endovascular cell therapy. Radiology 246: 185–192PubMedCrossRefGoogle Scholar
  14. 14.
    Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF, Rutt BK, Foster PJ (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55: 23–29PubMedCrossRefGoogle Scholar
  15. 15.
    Shapiro EM, Medford-Davis LN, Fahmy TM, Dunbar CE, Koretsky AP (2007) Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol Imaging 2: 147–153PubMedCrossRefGoogle Scholar
  16. 16.
    Jirák D, Kríz J, Herynek V, Andersson B, Girman P, Burian M, Saudek F, Hájek M (2004) MRI of transplanted pancreatic islets. Magn Reson Med 52: 1228–1233PubMedCrossRefGoogle Scholar
  17. 17.
    Evgenov NV, Medarova Z, Dai G, Bonner-Weir S, Moore A (2006) In vivo imaging of islet transplantation. Nat Med 12: 144–148PubMedCrossRefGoogle Scholar
  18. 18.
    Tai JH, Foster P, Rosales A, Feng B, Hasilo C, Martinez V, Ramadan S, Snir J, Melling CW, Dhanvantari S, Rutt B, White DJ (2006) Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla. Diabetes 55: 2931–2938PubMedCrossRefGoogle Scholar
  19. 19.
    Barnett BP, Arepally A, Karmarkar PV, Qian D, Gilson WD, Walczak P, Howland V, Lawler L, Lauzon C, Stuber M, Kraitchman DL, Bulte JW (2007) Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat Med 13: 986–991PubMedCrossRefGoogle Scholar
  20. 20.
    Kriz J, Jirak D, White D, Foster P (2008) Magnetic resonance imaging of pancreatic islets transplanted into the right liver lobes of diabetic mice. Transplant Proc 40: 444–448PubMedCrossRefGoogle Scholar
  21. 21.
    Gotoh M, Maki T, Kiyoizumi T, Satomi S, Monaco AP (1985) An improved method for isolation of mouse pancreatic islets. Transplantation 140: 437–438CrossRefGoogle Scholar
  22. 22.
    Yonekawa Y, Okitsu T, Wake K, Iwanaga Y, Noguchi H, Nagata H, Liu X, Kobayashi N, Matsumoto S (2006) A new mouse model for intraportal islet transplantation with limited hepatic lobe as a graft site. Transplantation 82: 712–715PubMedCrossRefGoogle Scholar
  23. 23.
    Russ JC (2006) The image processing handbook, 5th edn (Image Processing Handbook). CRC, USAGoogle Scholar
  24. 24.
    Gonzales RC, Woods RE, Eddins SL (2004) Digital image processing using Matlab. Pearson Prentice Hall, New JerseyGoogle Scholar
  25. 25.
    Inderbitzin D, Gass M, Beldi G, Ayouni E, Nordin A, Sidler D, Gloor B, Candinas D, Stoupis C (2004) Magnetic resonance imaging provides accurate and precise volume determination of the regenerating mouse liver. J Gastrointest Surg 8: 806–811PubMedCrossRefGoogle Scholar
  26. 26.
    Sjögren CE, Johansson C, Naevestad A, Sontum PC, Briley-Saebø K, Fahlvik AK (1997) Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magn Reson Imaging 15: 55–67PubMedCrossRefGoogle Scholar
  27. 27.
    Evgenov NV, Medarova Z, Pratt J, Pantazopoulos P, Leyting S, Bonner-Weir S, Moore A (2006) In vivo imaging of immune rejection in transplanted pancreatic islets. Diabetes 55: 2419– 2428PubMedCrossRefGoogle Scholar
  28. 28.
    Chen X, Zhang X, Larson CS, Baker MS, Kaufman DB (2006) In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection. Transplantation 81: 1421–1427PubMedCrossRefGoogle Scholar
  29. 29.
    van der Windt DJ, Bottino R, Casu A, Campanile N, Cooper DK (2007) Rapid loss of intraportally transplanted islets: an overview of pathophysiology and preventive strategies. Xenotransplantation 14: 288–297PubMedCrossRefGoogle Scholar
  30. 30.
    Titus T, Badet L, Gray DW (2000) Islet cell transplantation for insulin-dependant diabetes mellitus: perspectives from the present and prospects for the future. Expert Rev Mol Med 2: 1–28PubMedGoogle Scholar
  31. 31.
    Kriz J, Jirák D, Girman P, Berková Z, Zacharovova K, Honsova E, Lodererova A, Hajek M, Saudek F (2005) Magnetic resonance imaging of pancreatic islets in tolerance and rejection. Transplantation 80: 1596–1603PubMedCrossRefGoogle Scholar
  32. 32.
    Berkova Z, Kriz J, Girman P, Zacharovova K, Koblas T, Dovolilova E, Saudek F (2005) Vitality of pancreatic islets labeled for magnetic resonance imaging with iron particles. Transplant Proc 37: 3496–3498PubMedCrossRefGoogle Scholar
  33. 33.
    Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1: 429–435PubMedCrossRefGoogle Scholar
  34. 34.
    Berkova Z, Jirak D, Zacharovova K, Kriz J, Lodererova A, Girman P, Koblas T, Dovolilova E, Vancova M, Hajek M, Saudek F (2008) Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance. Transplantation 85: 155–159PubMedCrossRefGoogle Scholar
  35. 35.
    Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S, Lepetit-Coiffe M, Marangon N, Saudek F, James Shapiro AM, Bosco D, Berney T (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8: 701–706PubMedCrossRefGoogle Scholar
  36. 36.
    Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53: 999–1005PubMedCrossRefGoogle Scholar
  37. 37.
    Stuber M, Gilson WD, Schär M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58: 1072–1077PubMedCrossRefGoogle Scholar
  38. 38.
    Farrar CT, Dai G, Novikov M, Rosenzweig A, Weissleder R, Rosen BR, Sosnovik DE (2008) Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed 21: 453–463PubMedCrossRefGoogle Scholar
  39. 39.
    Pawelczyk E, Arbab AS, Chaudhry A, Balakumaran A, Robey PG, Frank JA (2008) In vitro model of bromodeoxyuridine or iron oxide nanoparticle uptake by activated macrophages from labeled stem cells: implications for cellular therapy. Stem Cells 5: 1366–1375CrossRefGoogle Scholar

Copyright information

© ESMRMB 2009

Authors and Affiliations

  • Daniel Jirak
    • 1
  • Jan Kriz
    • 1
    • 2
  • Michal Strzelecki
    • 3
  • Jiabi Yang
    • 2
  • Craig Hasilo
    • 2
  • David J. White
    • 2
  • Paula J. Foster
    • 1
    • 4
  1. 1.Imaging Research LaboratoriesRobarts Research InstituteLondonCanada
  2. 2.Transplantation GroupRobarts Research InstituteLondonCanada
  3. 3.Institute of ElectronicsTechnical University of LodzLodzPoland
  4. 4.Department of Medical BiophysicsUniversity of Western OntarioLondonCanada

Personalised recommendations