Advertisement

Voxel-based reproducibility of T2 relaxation time in patellar cartilage at 1.5 T with a new validated 3D rigid registration algorithm

  • José G. Raya
  • Annie Horng
  • Olaf Dietrich
  • Jürgen Weber
  • Julia Dinges
  • Elisabeth Mützel
  • Maximilian F. Reiser
  • Christian Glaser
Research Article

Abstract

Object

T2 relaxation time is a promising MRI parameter for the early diagnosis and follow-up of osteoarthritis. Assessing the evolution of osteoarthritis needs exact comparison of datasets acquired at different times and knowledge of the T2 reproducibility. The aims of this work were to establish a method for voxel-wise comparison of T2 datasets and to assess voxel-based T2 reproducibility in healthy patellar cartilage.

Materials and methods

A new rigid 3D-registration algorithm was developed. The precision of the registration algorithm was calculated with numerical simulations and in vitro measurements. In vivo T2 reproducibility was assessed in six volunteers measured at seven different times. The voxel-based reproducibility was characterized with the coefficient of variation (CV) of T2, and its regional variations were analyzed.

Results

The registration algorithm showed an average registration precision lower than 25% of the voxel size. In vivo voxel-based T2 reproducibility exhibited a median CV of 10.1%. Reproducibility showed significant regional differences. Largest CVs (15.4%) were found near the articular surface. The central regions showed the lowest CVs (7.2%) and the lateral regions intermediate CVs (11.2%).

Conclusion

Using a rigid 3D-registration algorithm provides voxel-based T2 reproducibility errors comparable to former, 2D region-based approaches, thus opening the possibility of voxel-based monitoring of cartilage degradation in osteoarthritis.

Keywords

Registration Cartilage T2 relaxation time Reproducibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maroudas A (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260: 808–809PubMedCrossRefGoogle Scholar
  2. 2.
    Bank RA, Soudry M, Maroudas A, Mizrahi J, TeKoppele JM (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation. Arthritis Rheum 43: 2202–2210PubMedCrossRefGoogle Scholar
  3. 3.
    Glaser C (2006) Imaging of the cartilage. Radiologe 46: 16–25PubMedCrossRefGoogle Scholar
  4. 4.
    Glaser C (2005) New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin North Am 43: 641–653PubMedCrossRefGoogle Scholar
  5. 5.
    Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8: 355–368PubMedCrossRefGoogle Scholar
  6. 6.
    Mosher TJ, Dardzinski BJ, Smith MB (2000) Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2-preliminary findings at 3 T. Radiology 214: 259–266PubMedGoogle Scholar
  7. 7.
    Eckstein F, Glaser C (2004) Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol 8: 329–353PubMedCrossRefGoogle Scholar
  8. 8.
    Glaser C, Faber S, Eckstein F, Fischer H, Springer V, Heudorfer L, Stammberger T, Englmeier KH, Reiser M (2001) Optimization and validation of a rapid high-resolution T1-w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 19: 177–185PubMedCrossRefGoogle Scholar
  9. 9.
    Grunder W (2006) MRI assessment of cartilage ultrastructure. NMR Biomed 19: 855–876PubMedCrossRefGoogle Scholar
  10. 10.
    Xia Y, Moody JB, Alhadlaq H (2002) Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn Reson Med 48: 460–469PubMedCrossRefGoogle Scholar
  11. 11.
    Liess C, Lüsse S, Karger N, Heller M, Gluer CC (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10: 907–913PubMedCrossRefGoogle Scholar
  12. 12.
    Nieminen MT, Rieppo J, Toyras J, Hakumaki JM, Silvennoinen J, Hyttinen MM, Helminen HJ, Jurvelin JS (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46: 487–493PubMedCrossRefGoogle Scholar
  13. 13.
    Lüsse S, Claassen H, Gehrke T, Hassenpflug J, Schunke M, Heller M, Gluer CC (2000) Evaluation of water content by spatially resolved transverse relaxation times of human articular cartilage. Magn Reson Imaging 18: 423–430PubMedCrossRefGoogle Scholar
  14. 14.
    Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205: 546–550PubMedGoogle Scholar
  15. 15.
    David-Vaudey E, Ghosh S, Ries M, Majumdar S (2004) T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 22: 673–682PubMedCrossRefGoogle Scholar
  16. 16.
    Mosher TJ, Liu Y, Yang QX, Yao J, Smith R, Dardzinski BJ, Smith MB (2004) Age dependency of cartilage magnetic resonance imaging T2 relaxation times in asymptomatic women. Arthritis Rheum 50: 2820–2828PubMedCrossRefGoogle Scholar
  17. 17.
    Dunn TC, Lu Y, Jin H, Ries MD, Majumdar S (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232: 592–598PubMedCrossRefGoogle Scholar
  18. 18.
    Ueda H, Baba T, Toriumi H, Ohno S (2001) Anionic sites in articular cartilage revealed by polyethyleneimine staining. Micron 32: 439–446PubMedCrossRefGoogle Scholar
  19. 19.
    Glaser C, Mendlik T, Dinges J, Weber J, Stahl R, Trumm C, Reiser M (2006) Global and regional reproducibility of T2 relaxation time measurements in human patellar cartilage. Magn Reson Med 56: 527–534PubMedCrossRefGoogle Scholar
  20. 20.
    Glaser C, Horng A, Mendlik T, Weckbach S, Hoffmann RT, Wagner S, Raya JG, Horger W, Reiser M (2007) T2 relaxation time in patellar cartilage—global and regional reproducibility at 1.5 Tesla and 3 Tesla. Röfo 179: 146–152PubMedGoogle Scholar
  21. 21.
    Koff FK, Parratte S, Amrami KK, Kaufman KR (2009) Examiner repeatability of patellar cartilage T2 values. Magn Reson Imaging 27: 131–136PubMedCrossRefGoogle Scholar
  22. 22.
    Mendlik T, Faber SC, Weber J, Hohe J, Rauch E, Reiser M, Glaser C (2004) T2 quantitation of human articular cartilage in a clinical setting at 1.5 T: implementation and testing of four multiecho pulse sequence designs for validity. Invest Radiol 39: 288–299PubMedCrossRefGoogle Scholar
  23. 23.
    Hohe J, Faber S, Muehlbauer R, Reiser M, Englmeier KH, Eckstein F (2002) Three-dimensional analysis and visualization of regional MR signal intensity distribution of articular cartilage. Med Eng Phys 24: 219–227PubMedCrossRefGoogle Scholar
  24. 24.
    Raya JG, Dietrich O, Horng A, Weber J, Reiser MF, Glaser C (2008) Accuracy and precision of T2 calculation from low SNR images: application to the articular cartilage. In: Proceedings of the 16th annual meeting of the International Society of Magnetic Resonance in the Medicine. Toronto, CA, 2558Google Scholar
  25. 25.
    Fletcher R (2000) Practical methods of optimization. John Wiley and Sons, New York, pp 44–80Google Scholar
  26. 26.
    Eckstein F, Tieschky M, Faber SC, Haubner M, Kolem H, Englmeier KH, Reiser M (1998) Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology 207: 243–248PubMedGoogle Scholar
  27. 27.
    Massey FJ (1951) The Kolmogorov–Smirnov test for goodness of fit. J Am Stat Assoc 46: 68–78CrossRefGoogle Scholar
  28. 28.
    Hill DLG (2001) Medical image registration. Phys Med Biol 46: 1–45CrossRefGoogle Scholar
  29. 29.
    Fitzpatrick JM, West JB (2001) The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging 20: 917–927PubMedCrossRefGoogle Scholar
  30. 30.
    Maurer CR Jr, Fitzpatrick JM, Wang MY, Galloway RL Jr, Maciunas RJ, Allen GS (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16: 447–462PubMedCrossRefGoogle Scholar
  31. 31.
    West JB, Fitzpatrick JM, Toms SA, Maurer CR Jr, Maciunas RJ (2001) Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48: 810–816PubMedCrossRefGoogle Scholar
  32. 32.
    Lazebnik RS, Lancaster TL, Breen MS, Lewin JS, Wilson DL (2003) Volume registration using needle paths and point landmarks for evaluation of interventional MRI treatments. IEEE Trans Med Imaging 22: 653–660PubMedCrossRefGoogle Scholar
  33. 33.
    Woods RP, Grafton ST, Watson JDG, Sicotte NL, Mazziotta JC (1998) Automated image registration. I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 22: 139–152PubMedCrossRefGoogle Scholar
  34. 34.
    Stammberger T, Hohe J, Englmeier KH, Reiser MF, Eckstein F (2000) Elastic registration of 3D cartilage surfaces from MR image data for detecting local changes in cartilage thickness. Magn Reson Med 44: 592–601PubMedCrossRefGoogle Scholar
  35. 35.
    Carballido-Gamio J, Bauer JS, Stahl R, Lee KY, Krause S, Link TM, Majumdar S (2008) Inter-subject comparison of MRI knee cartilage thickness. Med Image Anal 12: 120–135PubMedCrossRefGoogle Scholar
  36. 36.
    Duncan RC, Hay EM, Saklatvala J, Croft PR (2006) Prevalence of radiographic osteoarthritis: it all depends on your point of view. Rheumatology 45: 757–760PubMedCrossRefGoogle Scholar
  37. 37.
    Glaser C, Putz R (2002) Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity. Osteoarthr Cartil 10: 83–99PubMedCrossRefGoogle Scholar
  38. 38.
    Duewell SH, Ceckler TL, Ong K, Wen H, Jaffer FA, Chesnick SA, Balaban RS (1995) Musculoskeletal MR imaging at 4 T and at 1.5 T: comparison of relaxation times and image contrast. Radiology 196: 551–555PubMedGoogle Scholar
  39. 39.
    Mosher TJ, Smith H, Dardzinski BJ, Schmithorst VJ, Smith MB (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR 177: 665–669PubMedGoogle Scholar

Copyright information

© ESMRMB 2009

Authors and Affiliations

  • José G. Raya
    • 1
  • Annie Horng
    • 2
  • Olaf Dietrich
    • 1
  • Jürgen Weber
    • 1
  • Julia Dinges
    • 3
  • Elisabeth Mützel
    • 4
  • Maximilian F. Reiser
    • 1
    • 2
  • Christian Glaser
    • 2
  1. 1.Josef Lissner Laboratory for Biomedical Imaging, Department of Clinical Radiology, GroßhadernLudwig Maximilian University of MunichMunichGermany
  2. 2.Department of Clinical Radiology, GroßhadernLudwig Maximilian University of MunichMunichGermany
  3. 3.Institut für RöntgendiagnostikKlinikum rechts der Isar der Technischen Universität MünchenMunichGermany
  4. 4.Department of Forensic MedicineLudwig Maximilian University of MunichMunichGermany

Personalised recommendations