Advertisement

Two-dimensional MR spectroscopy of healthy and cancerous prostates in vivo

  • M. Albert Thomas
  • Thomas Lange
  • S. Sendhil Velan
  • Rajakumar Nagarajan
  • Steve Raman
  • Ana Gomez
  • Daniel Margolis
  • Stephany Swart
  • Raymond R. Raylman
  • Rolf F. Schulte
  • Peter Boesiger
Review Article

Abstract

Objectives

A major goal of this article is to summarize the current status of evaluating prostate metabolites non-invasively using spatially resolved two-dimensional (2D) MR Spectroscopy (MRS).

Materials and Methods

Due to various technical challenges, the spatially resolved versions of 2D MRS techniques are currently going through the developmental stage. During the last decade, four different versions of 2D MRS sequences have been successfully implemented on 3T and 1.5T MRI scanners manufactured by three different vendors. These sequences include half and maximum echo sampled J-resolved spectroscopy (JPRESS), S-PRESS and L-COSY, which are single volume localizing sequences, and the multi-voxel based JPRESS sequence.

Results

Even though greater than 1ml voxels have been used, preliminary evaluations of 2D JPRESS, S-PRESS and L-COSY sequences have demonstrated unambiguous detection of citrate, creatine, choline, spermine and more metabolites in human prostates. ProFIT-based quantitation of JPRESS and L-COSY data clearly shows the superiority of 2D MRS over conventional one-dimensional (1D) MRS and more than six metabolites have been successfully quantified. These sequences have been evaluated in a small group of prostate pathologies and pilot investigations using these sequences show promising results in prostate pathologies.

Conclusion

Implementation of the state-of-the-art 2D MRS techniques and preliminary evaluation in prostate pathologies are discussed in this review. Even though these techniques are going through developmental and early testing phases, it is evident that 2D MRS can be easily added on to any clinical Magnetic Resonance Imaging (MRI) protocol to non-invasively record the biochemical contents of the prostate.

Keywords

2D L-COSY J-resolved spectroscopy JPRESS S-PRESS Choline groups Perchloric acid Magic angle spinning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dall’era MA, Cooperberg MR, Chan JM et al (2008) Active surveillance for early-stage prostate cancer. Cancer 112: 1650–1659PubMedGoogle Scholar
  2. 2.
    McNeal JE (1988) Normal histology of the prostate. Am J Surg Pathol 12: 619–633PubMedGoogle Scholar
  3. 3.
    Jager GJ, Ruijter ET, van de Kaa CA et al (1997) Dynamic Turbo FLASH subtraction technique for contrast-enhanced MR imaging of the prostate correlation with histopathologic results. Radiology 203: 645–652PubMedGoogle Scholar
  4. 4.
    Nakashima J, Tanimoto A, Imai Y et al (2004) Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology 64: 101–105PubMedGoogle Scholar
  5. 5.
    Ikonen S, Karkkainen P, Kivisaari L et al (1998) Magnetic resonance imaging of clinically localized prostatic cancer. J Urol 159: 915–919PubMedGoogle Scholar
  6. 6.
    Casiani E, Polettini E, Bertini L et al (2004) Prostate cancer: evaluation with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiol Med (Torino) 108: 530–541Google Scholar
  7. 7.
    Schnall MD, Imai Y, Tomaszewski J et al (1991) Prostate cancer: local staging with endorectal; surface coil MR imaging. Radiology 178: 797–802PubMedGoogle Scholar
  8. 8.
    Jager GJ, Barentsz JO, de la Rosette JJ et al (1994) Preliminary results of endorectal surface coil magnetic resonance imaging for local staging of prostate cancer. Radiology 34: 129–133Google Scholar
  9. 9.
    Chelsky MJ, Schnall MD, Seidmon EJ, Pollack HM (1993) Use of endorectal surface coil magnetic resonance imaging for local staging of prostate cancer. J Urol 150: 391–405PubMedGoogle Scholar
  10. 10.
    Ling D, Lee JK, Heiken JP et al (1986) Prostatic carcinoma and benign prostatic hyperplasia: inability of MR imaging to distinguish between the two diseases. Radiology 158: 103–117PubMedGoogle Scholar
  11. 11.
    Kahn T, Burrig K, Schmitz-Drager B et al (1989) Prostatic carcinoma and benign prostatic hyperplasia MR imaging with histologic correlation. Radiology 173: 847–851PubMedGoogle Scholar
  12. 12.
    Phillips ME, Kressel HY, Spritzer CE et al (1987) Prostatic disorders. MR imaging at 1.5 T. Radiology 164: 386–392Google Scholar
  13. 13.
    Biondetti PR, Lee JK, Ling D et al (1987) Clinical stage B prostate carcinoma: staging with MR imaging. Radiology 162: 325–329PubMedGoogle Scholar
  14. 14.
    Kim CK, Park BK, Han JJ et al (2007) Diffusion-weighted imaging of the prostate at 3T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 31: 449–454PubMedGoogle Scholar
  15. 15.
    D’Amico AV, Tempany CM, Cormack R et al (2000) Transperineal magnetic resonance image guided prostate biopsy. J Urol 164: 385–387PubMedGoogle Scholar
  16. 16.
    Costello LC, Franklin RB (1991) Concepts of Cit production and secretion by prostate: metabolic relationships. Prostate 18: 25–46PubMedGoogle Scholar
  17. 17.
    Costello LC, Franklin RB (1991) Concepts of citrate production and secretion by prostate: 2. Hormonal relationships in normal and neoplastic prostate. Prostate 19: 181–205PubMedGoogle Scholar
  18. 18.
    Coffey DS (1992) The molecular biology, endocrinology, and physiology of the prostate and seminal vesicles. In: Walsh PC, Retick AB, Stamey ED, Vaughn ED(eds) Campbell’s urology. W. B. Saunders, Philadelphia, pp 221–266Google Scholar
  19. 19.
    Costello LC (1978) Regulation of citrate-related metabolism in normal and neoplastic prostate: endocrine control in neoplasia. Raven Press, New york, pp 303–314Google Scholar
  20. 20.
    Janne J, Poso H, Raina A (1978) Polyamines in rapid growth and cancer. Biochim Biophys Acta 473: 241–293PubMedGoogle Scholar
  21. 21.
    Heby O (1981) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19: 1–20PubMedGoogle Scholar
  22. 22.
    Smith RC, Litwin MS, Lu Y, Zetter BR (1995) Identification of an endogenous inhibitor of prostatic carcinoma cell growth. Nat Med 1: 1040–1045PubMedGoogle Scholar
  23. 23.
    Romijn JC (1991) Polyamine requirement of prostate cancer cell proliferation. In: Karr JP, Coffey DS, Smith RG, Tindall DJ(eds) Molecular and cellular biology of prostate cancer. Plenum Press, New York, pp 103–114Google Scholar
  24. 24.
    Jänne J, Pösö H, Raina A (1978) Polyamines in rapid growth and cancer. Biochim Biophys Acta 473: 241–293PubMedGoogle Scholar
  25. 25.
    Takyi EE, Fuller DJ, Donaldson MJ, Thomas GH (1977) Deoxyribonucleic acid and polyamine synthesis in rat ventral prostate: effects of age of the intact rat and androgen stimulation of the castrated rat with testosterone, 5 alpha-dihydrotestosterone and 5 alpha-androstane-3 beta, 17 beta-diol. Biochem J 162: 87–97PubMedGoogle Scholar
  26. 26.
    Costello LC, Franklin RB, Narayan P (1999) Citrate in the diagnosis of prostate cancer. Prostate 38: 237–245PubMedGoogle Scholar
  27. 27.
    Cornel EB, Smits GA, de Ruijter JE et al (1995) In vitro proton magnetic resonance spectroscopy of four human prostate cancer cell lines. Prostate 26: 275–280PubMedGoogle Scholar
  28. 28.
    Kurhanewicz J, Thomas MA, Jajodia P et al (1991) 31 P spectroscopy of the human prostate gland in vivo using a transectal probe. Magn Reson Med 22: 404–413PubMedGoogle Scholar
  29. 29.
    Thomas MA, Narayan P, Kurhanewicz J et al (1992) Detection of phosphorus metabolites in human prostates with a transrectal 31 P NMR probe. J Magn Reson 99: 377–386Google Scholar
  30. 30.
    Narayan P, Kurhanewicz J (1992) Magnetic resonance spectroscopy in prostate disease: diagnostic possibilities and future developments. Prostate Suppl 4: 43–50PubMedGoogle Scholar
  31. 31.
    van der Graaf M, Schipper RG, Oosterhof GO et al (2000) Proton MR spectroscopy of prostatic tissue focused on the detection of spermine, a possible biomarker of malignant behavior in prostate cancer. MAGMA 10: 153–159PubMedGoogle Scholar
  32. 32.
    Fowler AH, Pappas AA, Holder JC et al (1992) Differentiation of human prostate cancer from benign hypertrophy by in vitro 1H NMR. Magn Reson Med 25: 140–147PubMedGoogle Scholar
  33. 33.
    Koutcher JA, Zakian K, Hricak H (2000) Magnetic resonance spectroscopic studies of the prostate. Mol Urol 4: 143–152PubMedGoogle Scholar
  34. 34.
    Macdonald JM, Kurhanewicz J, Dahiya R et al (1993) Effect of glucose and confluency on phosphorus metabolites of perfused human prostatic adenocarcinoma cells as determined by 31P MRS. Magn Reson Med 29: 244–248PubMedGoogle Scholar
  35. 35.
    Yacoe ME, Sommer G, Peehl D (1991) In vitro proton spectroscopy of normal and abnormal prostate. Magn Reson Med 19: 429–438PubMedGoogle Scholar
  36. 36.
    Lynch ML, Nicholson JK (1997) Proton MRS of human prostatic fluid: correlations between citrate, spermine, and myo-inositol levels and changes with disease. Prostate 30: 248–255PubMedGoogle Scholar
  37. 37.
    Hahn P, Smith IC, Leboldus L et al (1997) The classification of benign and malignant human prostate tissue by multivariate analysis of 1H magnetic resonance spectra. Cancer Res 57: 3398–3401PubMedGoogle Scholar
  38. 38.
    Cheng LL, Burns MA, Taylor JL et al (2005) Metabolic characterization of human prostate cancer with tissue magnetic resonance spectroscopy. Cancer Res 65: 3030–3034PubMedGoogle Scholar
  39. 39.
    Burns MA, Taylor JL, Wu CL et al (2005) Reduction of spinning sidebands in proton NMR of human prostate tissue with slow high resolution magic angle spinning. Magn Reson Med 54: 34–42PubMedGoogle Scholar
  40. 40.
    Taylor JL, Wu CL, Cory D et al (2003) High resolution magic angle spinning proton NMR analysis of human prostate tissue with slow spinning rates. Magn Reson Med 50: 627–632PubMedGoogle Scholar
  41. 41.
    Wu CL, Taylor JL, He W et al (2003) Proton high-resolution magic angle spinning NMR analysis of fresh and previously frozen tissue of human prostate. Magn Reson Med 50: 1307–1311PubMedGoogle Scholar
  42. 42.
    Cheng LL, Wu C, Smith MR, Gonzalez RG (2001) Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4T. FEBS Lett 494: 112–116PubMedGoogle Scholar
  43. 43.
    Swanson MG, Zektzer AS, Tabatabai ZL et al (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55: 1257–1264PubMedGoogle Scholar
  44. 44.
    Swanson MG, Vigneron DB, Tabatabai ZL et al (2003) Proton HR-MAS spectroscopy and quantitative pathologic analysis of MRI/3D-MRSI-targeted postsurgical prostate tissues. Magn Reson Med 50: 944–954PubMedGoogle Scholar
  45. 45.
    Chaussy C, Thuroff S (2001) Results and side effects of high-intensity focused ultrasound in localized prostate cancer. J Endourol 15: 437–440PubMedGoogle Scholar
  46. 46.
    De La Taille A, Benson MC, Bagiella E et al (2000) Cryoablation for clinically localized prostate cancer using an argon-based system: complication rates and biochemical recurrence. BJU Int 85: 281–286PubMedGoogle Scholar
  47. 47.
    Shalev M, Kadmon D, Teh BS et al (2000) Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J Urol 163: 1747–1750PubMedGoogle Scholar
  48. 48.
    Wolf JS Jr, Cher M, Dall’era M et al (1995) The use and accuracy of cross-sectional imaging and fine needle aspiration cytology for detection of pelvic lymph node metastases before radical prostatectomy. J Urol 153: 993–999PubMedGoogle Scholar
  49. 49.
    Platt JF, Glazer GM, Gross BH et al (1987) CT evaluation of mediastinal lymph nodes in lung cancer: influence of the lobar site of the primary neoplasm. AJR Am J Roentgenol 149: 683–686PubMedGoogle Scholar
  50. 50.
    Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508: 333–348PubMedGoogle Scholar
  51. 51.
    Frahm J, Bruhn H, Gyngell ML et al (1989) Localized high resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 9: 79–93PubMedGoogle Scholar
  52. 52.
    Thomas MA, Narayan P, Kurhanewicz J et al (1990) 1 H MR spectroscopy of human prostate In vivo. J Magn Reson 87: 610– 619Google Scholar
  53. 53.
    Kurhanewicz J, Vigneron D, Nelson SJ et al (1995) Citrate as an in vivo marker to discriminate prostate cancer from benign prostatic hyperplasia and normal prostate peripheral zone: detection via localized proton spectroscopy. Urology 3: 459–466Google Scholar
  54. 54.
    Lowry M, Liney GP, Turnbull LW et al (1996) Quantification of citrate concentration in the prostate by proton magnetic resonance spectroscopy: zonal and age-related differences. Magn Reson Med 36: 352–358PubMedGoogle Scholar
  55. 55.
    Heerschap A, Jager GJ, van der Graaf M et al (1997) Proton MR Spectroscopy of the normal human prostate with an endorectal coil and a double spin-echo pulse sequence. Magn Reson Med 37: 204–213PubMedGoogle Scholar
  56. 56.
    Hricak H (2005) MR imaging and MR spectroscopic imaging in the pre-treatment evaluation of prostate cancer. Br J Radiol 78: S103–111PubMedGoogle Scholar
  57. 57.
    Rajesh A, Coakley FV, Kurhanewicz J (2007) 3D MR spectroscopic imaging in the evaluation of prostate cancer. Clin Radiol 62: 921–929PubMedGoogle Scholar
  58. 58.
    Mueller-Lisse UG, Scherr MK (2007) Proton MR spectroscopy of the prostate. Euro J Radiol 63: 351–360Google Scholar
  59. 59.
    Rothman DI, Petroff OA, Behar KL, Mattson RH (1993) Localized 1 H NMR measurements of γ-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 90: 5662–5666PubMedGoogle Scholar
  60. 60.
    Keltner JR, Wald LL, Christensen JD et al (1996) A technique for detecting GABA in the human brain with PRESS localization and optimized refocusing spectral editing radiofrequency pulses. Magn Reson Med 36: 458–461PubMedCrossRefGoogle Scholar
  61. 61.
    Lee HK, Yaman A, Nalcioglu O (1995) Homonuclear J-refocused spectral editing technique for quantification of glutamine and glutamate by 1 H NMR spectroscopy. Magn Reson Med 34: 253–259PubMedGoogle Scholar
  62. 62.
    Trabesinger AH, Meier D, Boesiger P (2003) In vivo 1H NMR spectroscopy of individual human brain metabolites at moderate field strengths. Magn Reson Imaging 21: 1295–1302PubMedGoogle Scholar
  63. 63.
    Ernst RR, Bodenhausen G, Wokaun A (1987) Principles of NMR spectroscopy in one and two dimensions. Oxford Publications, OxfordGoogle Scholar
  64. 64.
    Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, AmsterdamGoogle Scholar
  65. 65.
    Aue WP, Karhan J, Ernst RR (1976) Homonuclear broadband decoupling in two dimensional J-resolved NMR spectroscopy. J Chem Phys 64: 4226–4227Google Scholar
  66. 66.
    Thomas MA, Marumoto A, Binesh N, Yue K, Barbaric Z (2000) Levels of citrate, spermine, choline in human prostate using transrectal MR spectroscopy. In: 86th scientific assembly and RSNA meeting, Chicago, p 365Google Scholar
  67. 67.
    Swanson MG, Vigneron DB, Tran TK et al (2001) Single-voxel oversampled J-resolved spectroscopy of in vivo human prostate tissue. Magn Reson Med 45: 973–980PubMedGoogle Scholar
  68. 68.
    Yue K, Marumoto A, Binesh N, Thomas MA (2002) 2D JPRESS of human prostates using an endorectal receiver coil. Magn Reson Med 47: 1059–1064PubMedGoogle Scholar
  69. 69.
    Kim DH, Margolis D, Xing L et al (2005) In vivo prostate magnetic resonance spectroscopic imaging using two-dimensional J-resolved PRESS at 3T. Magn Reson Med 53: 1177–1182PubMedGoogle Scholar
  70. 70.
    Lange T, Trabesinger AH, Schulte RF et al (2006) Prostate spectroscopy at 3 tesla using two-dimensional S-PRESS. Magn Reson Med 56: 1220–1226PubMedGoogle Scholar
  71. 71.
    van der Graaf M, Schipper RG, Oosterhof GO et al (2000) Proton MR spectroscopy of prostatic tissue focused on the detection of spermine: a possible biomarker of malignant behavior in prostate cancer. MAGMA 10: 153–159PubMedGoogle Scholar
  72. 72.
    Ryner LN, Sorenson JA, Thomas MA (1995) 3-D localized 2D-NMR spectroscopy on an MRI scanner. J Magn Reson B 107: 126–137PubMedGoogle Scholar
  73. 73.
    Ryner LN, Sorenson JA, Thomas MA (1995) Localized 2D J-resolved H-1 MR spectroscopy: strong coupling effects in vitro and in vivo. Magn Reson Imaging 13: 853–869PubMedGoogle Scholar
  74. 74.
    Thomas MA, Ryner LN, Mehta M et al (1996) Localized 2D J-resolved 1 H MR spectroscopy of human brain tumors in vivo. J Magn Reson Imaging 6: 453–459PubMedGoogle Scholar
  75. 75.
    Kreis R, Boesch C (1996) Spatially Localized, one- and two-dimensional NMR Spectroscopy and in vivo application to human muscle. J Magn Reson B 113: 103–118PubMedGoogle Scholar
  76. 76.
    Dreher W, Leibfritz D (1995) On the use of two-dimensional J NMR measurements for in vivo proton MRS: measurement of homonuclear decoupled spectra without the needs for short echo times. Magn Reson Med 34: 331–337PubMedGoogle Scholar
  77. 77.
    Hurd RE, Gurr D, Sailasuta P (1998) Proton spectroscopy without water suppression: the oversampled J-resolved experiment. Magn Reson Med 40: 343–347PubMedGoogle Scholar
  78. 78.
    Schulte RF, Boesiger P (2006) ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra. NMR Biomed 19: 255– 263PubMedGoogle Scholar
  79. 79.
    Schulte RF, Lange T, Beck J et al (2006) Improved two-dimensional J-resolved spectroscopy. NMR Biomed 19: 264– 270PubMedGoogle Scholar
  80. 80.
    Jensen JE, Frederic BD, Wang L, Brown J, Renshaw PF (2004) In vivo two-dimensional J-resolved GABA spectroscopic imaging at 4T. Proc Intl Soc Magn Reson Med 11: 2301Google Scholar
  81. 81.
    Adalsteinsson E, Spielman DM (1999) Spatially resolved two-dimensional spectroscopy. Magn Reson Med 41: 8–12PubMedGoogle Scholar
  82. 82.
    Pauly JM, Le Roux P, Nishimura D, Macovski A (1991) Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm. IEEE Trans Med Imaging 10: 53–65PubMedGoogle Scholar
  83. 83.
    Brooker HR, Mareci TH, Mao JT (1987) Selective Fourier transform localization. Magn Reson Med 5: 417–433PubMedGoogle Scholar
  84. 84.
    Bruhn H, Frahm J, Gyngell ML et al (1989) Cerebral metabolism in man after acute stroke: new observations using localized proton NMR spectroscopy. Mag Reson Med 9: 126–131Google Scholar
  85. 85.
    Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104: 1–10PubMedGoogle Scholar
  86. 86.
    Macura S, Brown LR (1983) Improved sensitivity and resolution in two-dimensional homonuclear J-resolved NMR-spectroscopy of macromolecules. J Magn Reson 53: 529–535Google Scholar
  87. 87.
    de Beer R, van Ormondt D, Pijnappel WW (1992) Quantification of 1-D and 2-D magnetic resonance time domain signals. Pure Appl Chem 64: 815–823Google Scholar
  88. 88.
    Slotboom J, Boesch C, Kreis R (1998) Versatile frequency domain fitting using time domain models and prior knowledge. Magn Reson Med 39: 899–911PubMedGoogle Scholar
  89. 89.
    Provencher SW (1993) Estimation of metabolite concentrations from localized in-vivo proton NMR-spectra. Magn Reson Med 30: 672–679PubMedGoogle Scholar
  90. 90.
    Cavassila S, Deval S, Huegen C, van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14: 278–283PubMedGoogle Scholar
  91. 91.
    Kumar A (1978) Two-dimensional spin-echo NMR spectroscopy: a general method for calculation of spectra. J Magn Reson 30: 227–249Google Scholar
  92. 92.
    Wilman AH, Allen PS (1995) The response of the strongly coupled AB system of citrate to typical 1 H MRS localization sequences. J Magn Reson 107: 325–333Google Scholar
  93. 93.
    Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance: an object-oriented programming approach. J Magn Reson A 106: 75–105Google Scholar
  94. 94.
    Lange T, Schulte RF, Boesiger P (2008) Quantitative J-resolved prostate spectroscopy using two-dimensional prior-knowledge fitting. Magn Reson Med 59: 966–972PubMedGoogle Scholar
  95. 95.
    Garcia-Segura JM, Sanchez-Chapado M, Ibarburen C et al (1999) In vivo proton magnetic resonance spectroscopy of diseased prostate: Spectroscopic features of malignant versus benign pathology. Magn Reson Imaging 17(5): 755–765PubMedGoogle Scholar
  96. 96.
    Kurhanewicz J, Vigneron DB, Hricak H et al (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.1-cm(3)) spatial resolution. Radiology 198(3): 795–805PubMedGoogle Scholar
  97. 97.
    van Dorsten FA, van der Graaf M, Engelbrecht MRW et al (2004) Combined quantitative dynamic contrast-enhanced MR imaging and H-1 MR spectroscopic imaging of human prostate cancer. J Magn Reson Imaging 20(2): 279–287PubMedGoogle Scholar
  98. 98.
    Trabesinger AH, Meier D, Dydak U, Lamerichs R, Boesiger P (2005) Optimizing PRESS localized citrate detection at 3 tesla. Magn Reson Med 54: 51–58PubMedGoogle Scholar
  99. 99.
    Thomas MA, Yue K, Binesh N et al (2001) Localized two-dimensional shift correlated MR spectroscopy of human brain. Magn Reson Med 46: 58–67PubMedGoogle Scholar
  100. 100.
    Brereton IM, Galloway GJ, Rose SE, Doddrell DM (1994) Localized two-dimensional shift correlated spectroscopy in humans at 2 tesla. Magn Reson Med 32: 251–257PubMedGoogle Scholar
  101. 101.
    Kreis R, Boesch C (1996) Spatially localized, one- and two-dimensional NMR spectroscopy and in vivo application to human muscle. J Magn Reson B 113: 103–118PubMedGoogle Scholar
  102. 102.
    Delmas F, Beloeil JC, van der Sanden BP et al (2001) Two-voxel localization sequence for in vivo two-dimensional homonuclear correlation spectroscopy. J Magn Reson 149: 119–125PubMedGoogle Scholar
  103. 103.
    Ziegler A, Gillet B, Beloeil JC et al (2002) Localized 2D correlation spectroscopy in human brain at 3 T. MAGMA 14: 45– 49PubMedGoogle Scholar
  104. 104.
    Welch JW, Bhakoo K, Dixon RM et al (2003) In vivo monitoring of rat brain metabolites during vigabatrin treatment using localized 2D-COSY. NMR Biomed 16: 47–54PubMedGoogle Scholar
  105. 105.
    Thomas MA, Binesh N, Yue K et al (2003) Adding a new spectral dimension to localized 1H MR spectroscopy of human prostates using an endorectal coil. Spectroscopy 17: 521–527Google Scholar
  106. 106.
    Willker W, Flögel U, Leibfritz D (1998) A 1H/13C inverse 2D method for the analysis of the polyamines putrescine, spermidine and spermine in cell extracts and biofluids. NMR Biomed 11: 47–54PubMedGoogle Scholar
  107. 107.
    Thomas MA, Hattori N, Umeda M, Sawada T et al (2003) Evaluation of two-dimensional L-COSY and JPRESS using a 3T MRI scanner: from phantoms to human brain in vivo. NMR Biomed 16: 245–251PubMedGoogle Scholar
  108. 108.
    Chelsky MJ, Schnall MD, Seidmon EJ, Pollack HM (1993) Use of endorectal surface coil magnetic resonance imaging for local staging of prostate cancer. J Urol 150: 391–395PubMedGoogle Scholar
  109. 109.
    Hricak H, White S, Vigneron D et al (1994) Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectalpelvic phased-array coils. Radiology 193: 703–709PubMedGoogle Scholar
  110. 110.
    Park BK, Kim B, Kim CK et al (2007) Comparison of phased-array 3.0 T and endorectal 1.5 T magnetic resonance imaging in the evaluation of local staging accuracy for prostate cancer. J Comput Assist Tomogr 31: 534–538PubMedGoogle Scholar
  111. 111.
    Futterer JJ, Engenbrecht MR, Jager GJ et al (2007) Prostate cancer: comparison of local staging accuracy of pelvic phased-array coil alone versus integrated endorectal-pelvic phased-array coils. Eur Radiol 17: 1055–1065PubMedGoogle Scholar
  112. 112.
    Bloch BN, Rofsky NM, Baroni RH et al (2004) 3 Tesla magnetic resonance imaging of the prostate with combined pelvic phased-array and endorectal coils: initial experience. Acad Radiol 11: 863–867PubMedGoogle Scholar
  113. 113.
    Kim Y, Hsu IC, Pouliot J et al (2005) Expandable and rigid endorectal coils for prostate MRI: impact on prostate distortion and rigid image registration. Med Phys 32: 3569–3578PubMedGoogle Scholar
  114. 114.
    Mueller-Lisse UG, Swanson MG, Vigneron DB et al (2001) Time-dependent effects of hormone-deprivation therapy on prostate metabolism as detected by combined magnetic resonancce imaging and 3D magnetic resonance spectroscopic imaging. Magn Reson Med 46: 49–57PubMedGoogle Scholar
  115. 115.
    Mueller-Lisse UG, Scherr MK (2007) Proton MR spectroscopy of the prostate. Euro J Radiol 63: 351–360Google Scholar
  116. 116.
    Dreher W, Leibfritz D (1999) Detection of homonuclear decoupled in vivo proton NMR spectra using constant time chemical shift encoding: CT-PRESS. Magn Reson Imaging 17: 141–150PubMedGoogle Scholar
  117. 117.
    Mayer D, Kim DH, Adalsteinsson E, Spielman DM (2006) Fast CT-PRESS-based spiral chemical shift imaging at 3 tesla. Magn Reson Med 55: 974–978PubMedGoogle Scholar
  118. 118.
    Velan SS, Ramamurthy S, Ainala S et al (2007) Implementation and validation of localized constant-time correlated spectroscopy (LCT-COSY) on a clinical 3T MRI scanner for investigation of muscle metabolism. J Magn Reson Imaging 26: 410–417PubMedGoogle Scholar
  119. 119.
    Delikatny EJ, Hull WE, Mountford CE (1991) The effect of altering time domains and window functions in two-dimensional proton COSY spectra of biological specimens. J Magn Reson 94: 563–573Google Scholar

Copyright information

© ESMRMB 2008

Authors and Affiliations

  • M. Albert Thomas
    • 1
    • 2
  • Thomas Lange
    • 3
    • 6
  • S. Sendhil Velan
    • 4
  • Rajakumar Nagarajan
    • 1
  • Steve Raman
    • 1
  • Ana Gomez
    • 1
  • Daniel Margolis
    • 1
  • Stephany Swart
    • 4
  • Raymond R. Raylman
    • 4
  • Rolf F. Schulte
    • 5
  • Peter Boesiger
    • 3
  1. 1.Department of Radiological SciencesDavid Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Department of PsychiatryUniversity of CaliforniaLos AngelesUSA
  3. 3.Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
  4. 4.Center for Advanced Imaging and Department of RadiologyWest Virginia UniversityMorgantownUSA
  5. 5.GE Global ResearchMunichGermany
  6. 6.Department of Diagnostic Radiology, Section of Medical PhysicsUniversity of FreiburgFreiburgGermany

Personalised recommendations