Water proton T1 measurements in brain tissue at 7, 3, and 1.5T using IR-EPI, IR-TSE, and MPRAGE: results and optimization

  • P. J. Wright
  • O. E. Mougin
  • J. J. Totman
  • A. M. Peters
  • M. J. Brookes
  • R. Coxon
  • P. E. Morris
  • M. Clemence
  • S. T. Francis
  • R. W. Bowtell
  • P. A. Gowland
Research Article

Abstract

Method

This paper presents methods of measuring the longitudinal relaxation time using inversion recovery turbo spin echo (IR-TSE) and magnetization-prepared rapid gradient echo (MPRAGE) sequences, comparing and optimizing these sequences, reporting T1 values for water protons measured from brain tissue at 1.5, 3, and 7T. T1 was measured in cortical grey matter and white matter using the IR-TSE, MPRAGE, and inversion recovery echo planar imaging (IR-EPI) pulse sequences.

Results

In four subjects the T1 of white and grey matter were found to be 646±32 and 1,197±134ms at 1.5T, 838±50 and 1,607±112ms at 3T, and 1,126±97, and 1,939±149ms at 7T with the MPRAGE sequence. The T1 of the putamen was found to be 1,084±63ms at 1.5T, 1,332±68ms at 3T, and 1,644±167ms at 7T. The T1 of the caudate head was found to be 1,109± 66ms at 1.5T, 1,395±49ms at 3T, and 1,684±76ms at 7T.

Discussion

There was a trend for the IR-TSE sequence to underestimate T1 in vivo. The sequence parameters for the IR-TSE and MPRAGE sequences were also optimized in terms of the signal-to-noise ratio (SNR) in the fitted T1. The optimal sequence for IR-TSE in terms of SNR in the fitted T1 was found to have five readouts at TIs of 120, 260, 563, 1,221, 2,647, 5,736ms and TR of 7 s. The optimal pulse sequence for MPRAGE with readout flip angle  = 8° was found to have five readouts at TIs of 160, 398, 988, 2,455, and 6,102ms and a TR of 9 s. Further optimization including the readout flip angle suggests that the flip angle should be increased, beyond levels that are acceptable in terms of power deposition and point-spread function.

Keywords

High field Relaxometry Pulse sequences Optimization 

References

  1. 1.
    Paus T (2005) Mapping brain maturation and cognitive development during adolescence. Trends Cogn Sci 9: 60–68CrossRefPubMedGoogle Scholar
  2. 2.
    Paus T, Collins D, Evans A et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54: 255–266CrossRefPubMedGoogle Scholar
  3. 3.
    Koenig S, Brown R, Spiller M et al (1990) Relaxometry of brain—why white matter appears bright in MRI. Magn Reson Med 14: 482–495CrossRefPubMedGoogle Scholar
  4. 4.
    Rooney WD, Johnson G, Li X et al (2007) Magnetic field and tissue dependencies of human brain longitudinal (H2O)–H- relaxation in vivo. Mag Reson Med 57: 308–318CrossRefGoogle Scholar
  5. 5.
    Deichmann R, Good CD, Josephs O et al (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. Neuroimage 12: 112–127CrossRefPubMedGoogle Scholar
  6. 6.
    Kiefer B (1998) Turbo spin echo imaging. In: Schmitt F, Stehling MK, Turner R(eds) Echo planar imaging. Theory, technique and applications. Springer, Berlin, pp 583–604Google Scholar
  7. 7.
    Kurland RJ (1985) Strategies and tactics in NMR imaging relaxation-time measurements. 1 Minimizing relaxation-time errors due to image noise–the ideal case. Magn Reson Med 2: 136–158CrossRefPubMedGoogle Scholar
  8. 8.
    Weiss GH, Gupta RK, Ferretti JA et al (1980) Choice of optimal parameters for measurement of spin-lattice relaxation-times. 1. Math Formul 37: 369–379Google Scholar
  9. 9.
    Crawley AP, Henkelman RM (1988) A comparison of one-shot and recovery methods in T1-imaging. Magn Reson Med 7: 23–34CrossRefPubMedGoogle Scholar
  10. 10.
    Zaitsev M, Steinhoff S, Shah NJ (2003) Error reduction and parameter optimization of the TAPIR method for fast T-1 mapping 49: 1121–1132Google Scholar
  11. 11.
    Lin MS, Fletcher JW, Donati RM (1986) 2-Point T1 measurement—wide-coverage optimizations by stochastic simulations 3: 518–533Google Scholar
  12. 12.
    Freeman A, Gowland P, Mansfield P (1998) Optimization of the ultrafast look-locker echo-planar imaging T-1 mapping sequence. Magn Reson Imaging 16: 765–772CrossRefPubMedGoogle Scholar
  13. 13.
    Ordidge RJ, Gibbs P, Chapman B et al (1990) High-speed multislice T1 mapping using inversion-recovery echo-planar imaging. Magn Reson Med 16: 238–245CrossRefPubMedGoogle Scholar
  14. 14.
    Gowland PA, Leach MO (1991) A simple method for restoration of the signal polarity in multi-image inversion recovery sequences for measuring T1. Magn Reson Med 18: 224–231CrossRefPubMedGoogle Scholar
  15. 15.
    Press WH, Teukolsky SA, Vettering WT et al (1995) Numerical recipies in C, 2nd edn. Cambridge University Press, LondonGoogle Scholar
  16. 16.
    Yarnykh VL (2007) Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn Reson Med 57: 192–200CrossRefPubMedGoogle Scholar
  17. 17.
    Bakker C, Degraaf C, Vandijk P (1984) Derivation of quantitive information in NMR imaging—a phantom study. Phys Med Biol 29: 1511–1525CrossRefPubMedGoogle Scholar
  18. 18.
    Fischer H, Rinck P, Van Haverbeke Y et al (1990) Nuclear relaxation of human brain grey and white matter: analysis of field dependence and implications for MRI. Magn Reson Med 16: 317–334CrossRefPubMedGoogle Scholar
  19. 19.
    Meara SJP, Barker GJ (2007) The impact of magnetization transfer effects on inversion recovery sequences using a fast spin echo readout. International Society of Magnetic Resonance in Medicine, p 1818Google Scholar
  20. 20.
    Mitchell C, Truong T, Ibrahim T et al (2003) Accurate T1 measurements at 8Tesla despite radiofrequency inhomogeneity. Proc Int Soc Mag Reson Med, Toronto, p 1089Google Scholar
  21. 21.
    Ikonomidou V, Gelderen Pv, Zwart JD et al (2006) T1 measurements at 7T with application to tissue specific imaging. Proc Int Soc Mag Reson Med, Seattle, p 921Google Scholar
  22. 22.
    Li T, Deoni C (2006) Fast T1 mapping of the brain at 7T with RF calibration using three point DESPOT1 method. Proc Int Soc Mag Reson Med, Seattle, p 2643Google Scholar
  23. 23.
    Gelman N, Ewing J, Gorell J et al (2001) Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: Relation to estimated iron and water contents. Magn Reson Med 45: 71–79CrossRefPubMedGoogle Scholar
  24. 24.
    Lu H, Nagae-Poetscher L, Golay X et al (2005) Routine clinical brain MRI sequences for use at 3.0Tesla. J Magn Reson Imaging 22: 13–22CrossRefPubMedGoogle Scholar
  25. 25.
    Vymazal J, Righini A, Brooks R et al (1999) T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: Relation to iron content. Radiology 211: 489–495PubMedGoogle Scholar

Copyright information

© ESMRMB 2008

Authors and Affiliations

  • P. J. Wright
    • 1
  • O. E. Mougin
    • 1
  • J. J. Totman
    • 2
  • A. M. Peters
    • 1
  • M. J. Brookes
    • 1
  • R. Coxon
    • 1
  • P. E. Morris
    • 1
  • M. Clemence
    • 3
  • S. T. Francis
    • 1
  • R. W. Bowtell
    • 1
  • P. A. Gowland
    • 1
  1. 1.Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
  2. 2.The Brain and Body CentreUniversity of NottinghamNottinghamUK
  3. 3.Philips Medical SystemsReigate SurreyUK

Personalised recommendations