High proton relaxivity for gadolinium oxide nanoparticles

  • Maria Engström
  • Anna Klasson
  • Henrik Pedersen
  • Cecilia Vahlberg
  • Per-Olov Käll
  • Kajsa Uvdal
Research Article

Abstract

Objective: Nanosized materials of gadolinium oxide can provide high-contrast enhancement in magnetic resonance imaging (MRI). The objective of the present study was to investigate proton relaxation enhancement by ultrasmall (5 to 10 nm) Gd2O3 nanocrystals.

Materials and methods: Gd2O3 nanocrystals were synthesized by a colloidal method and capped with diethylene glycol (DEG). The oxidation state of Gd2O3 was confirmed by X-ray photoelectron spectroscopy. Proton relaxation times were measured with a 1.5-T MRI scanner. The measurements were performed in aqueous solutions and cell culture medium (RPMI).

Results: Results showed a considerable relaxivity increase for the Gd2O3–DEG particles compared to Gd-DTPA. Both T1 and T2 relaxivities in the presence of Gd2O3–DEG particles were approximately twice the corresponding values for Gd–DTPA in aqueous solution and even larger in RPMI. Higher signal intensity at low concentrations was predicted for the nanoparticle solutions, using experimental data to simulate a T1-weighted spin echo sequence.

Conclusion: The study indicates the possibility of obtaining at least doubled relaxivity compared to Gd–DTPA using Gd2O3–DEG nanocrystals as contrast agent. The high T1 relaxation rate at low concentrations of Gd2O3 nanoparticles is very promising for future studies of contrast agents based on gadolinium-containing nanocrystals.

Keywords

Gd2O3 Nanoparticle Contrast agent Relaxivity MRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jaffer FA, Weissleder R (2005) Molecular imaging in the clinical arena. J Am Med Assoc 293:855–862CrossRefGoogle Scholar
  2. 2.
    Gillies RJ (2002) In vivo molecular imaging. J Cell Biochem 39:231–238CrossRefGoogle Scholar
  3. 3.
    Dijkhuizen RM, Nicolay K (2003) Magnetic resonance imaging in experimental brain model of brain disorders. J Cerebr Blood Flow Metabol 23:1383–1402CrossRefGoogle Scholar
  4. 4.
    Wickline SA, Lanza GM (2002) Molecular imaging, targeted therapeutics, and nanoscience. J Cell Biochem S39:90–97CrossRefGoogle Scholar
  5. 5.
    McDonald MA, Watkin KL (2004) Investigation into the structure and magnetic properties of dextran small particulate gadolinium oxide nanoparticles. In: 12th scientific meeting and exhibition, International Society for Magnetic Resonance in Medicine (ISMRM), Kyoto, Japan, p 1718Google Scholar
  6. 6.
    McDonald MA, Watkin KL (2003) Small particulate gadolinium oxide and gadolinium oxide albumin microspheres as multimodal contrast and therapeutic agents. Invest Radiol 38:305–310PubMedCrossRefGoogle Scholar
  7. 7.
    Söderlind F, Pedersen H, Petoral RM Jr, Käll P-O, Uvdal K (2005) Synthesis and characterisation of Gd 2 O 3 nanocrystals functionalised by organic acids. J Colloid Interface Sci 288:140–148PubMedCrossRefGoogle Scholar
  8. 8.
    Feldmann C (2003) Polyol-mediated synthesis of nanoscale functional materials. Adv Funct Mater 13:101–107CrossRefGoogle Scholar
  9. 9.
    Bazzi R, Flores-Gonzalez MA, Louis C, Lebbou K, Durjardin C, Brenier A, Zhang W, Tillement O, Bernstein E, Perriat P (2003) Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. J Luminescence 102:445–450CrossRefGoogle Scholar
  10. 10.
    Bazzi R, Flores C, Louis C, Lebbou K, Zhang W, Durjardin C, Roux S, Mercier B, Ledoux G, Bernstein E, Perriat P, Tillement O (2004) Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J Colloid Interface Sci 273:191–197PubMedCrossRefGoogle Scholar
  11. 11.
    In den Kleef JJE, Cuppen JJM (1987) RLSQ: T1, T2 and RHO calculations, combining ratios and least squares. Magn Res Med 5:513–524CrossRefGoogle Scholar
  12. 12.
    Raiser D, Deville JP (1991) Study of XPS photoemission of some gadolinium compounds. J Electron Spectrosc 57:91–97CrossRefGoogle Scholar
  13. 13.
    Pedersen H, Söderlind F, Petoral RM, Uvdal K, Käll PO, Ojamäe L (2005) Surface interactions betweenY(2)O(3) nanocrystals and organic molecules – study. Surf Sci 592:124–140CrossRefGoogle Scholar
  14. 14.
    Hendrick RE, Haacke EM (1993) Basic physics of MR contrast agents and maximization of image contrast. J Magn Res Imag 3:137–148CrossRefGoogle Scholar
  15. 15.
    Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73:679–712CrossRefGoogle Scholar
  16. 16.
    Nelson TR, Tung SM (1987) Temperature dependence of proton relaxation times in vitro. Magn Reson Imag 5:189–199CrossRefGoogle Scholar
  17. 17.
    Stanisz GJ, Henkelman RM (2000) Gd–DTPA relaxivity depends on macromolecular content. Magn Red Med 44:665–667CrossRefGoogle Scholar
  18. 18.
    Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927CrossRefGoogle Scholar
  19. 19.
    Aime S, Barge A, Botta M, Parker D, De Sousa AS (1997) Prototropic vs whole water exchange contribution to the solvent relaxation enhancement in the aqueous solution of a cationic Gd3+ macrocyclic complex. J Am Chem Soc 119:4767–4768CrossRefGoogle Scholar
  20. 20.
    Aime S, Botta M, Fasano M, Paoletti S, Terreno E (1997) Relaxometric determination of the exchange rate of the coordinated water protons in a Neutral GdIII chelate. Chem Eur J 3:1499–1504CrossRefGoogle Scholar
  21. 21.
    Botta M, Aime S, Barge A, Bobba G, Dickins RS, Parker D, Terreno E (2003) Ternary complexes between cationic GdIII chelates and anionic metabolites an aqueous solution: an NMR relaxometric study. Chem Eur J 9:2102–2109CrossRefGoogle Scholar
  22. 22.
    Lowe MP, Parker D, Reany O, Aime S, Botta M, Castellano G, Gianolio E, Pagliarin R (2001) pH-dependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation. J Am Chem Soc 123:7601–7609PubMedCrossRefGoogle Scholar
  23. 23.
    Reynolds CH, Annan N, Beshah K, Huber JH, Shaber SH, Lenkinski RE, Wortman JA (2000) Gadolinium-loaded nanoparticles: new contrast agents for magnetic resonance imaging. J Am Chem Soc 122:8940–8945CrossRefGoogle Scholar
  24. 24.
    Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Res Imag 8:467–481CrossRefGoogle Scholar
  25. 25.
    Bruemmel Y, Chan CP, Renneberg R, Thuenemann A, Seydack M (2004) On the influence of different surfaces in nano- and submicrometer particle based fluorescence immunoassays. Langmuir 20:9371–9379PubMedCrossRefGoogle Scholar
  26. 26.
    Nichkova M, Dosev D, Gee SJ, Hammock BD, Kennedy IM (2005) Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. Anal Chem 77:6864–6873PubMedCrossRefGoogle Scholar
  27. 27.
    Lebbou K, Perriat P, Tillement O (2005) Recent progress on elaboration of undoped and doped Y2O3, Gd2O3 rare earth nano-oxide. J Nanosci Nanotechnol 5:1448–1454PubMedCrossRefGoogle Scholar

Copyright information

© ESMRMB 2006

Authors and Affiliations

  • Maria Engström
    • 1
    • 2
  • Anna Klasson
    • 1
    • 2
  • Henrik Pedersen
    • 3
  • Cecilia Vahlberg
    • 4
  • Per-Olov Käll
    • 3
  • Kajsa Uvdal
    • 4
  1. 1.CMIVLinköping UniversityLinköpingSweden
  2. 2.Department of RadiologyLinköping UniversityLinköpingSweden
  3. 3.Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
  4. 4.Department of Physics and Measurement Technology/Applied PhysicsLinköping UniversityLinköpingSweden

Personalised recommendations