Semiautomatic Analysis of Phase Contrast Magnetic Resonance Imaging of Cerebrospinal Fluid Flow through the Aqueduct of Sylvius

  • Yudy Natalia Flórez
  • David Moratal
  • Juana Forner
  • Luis Martí-Bonmatí
  • Estanislao Arana
  • Ulises Guajardo-Hernández
  • José Millet-Roig
Research article


Objective: Quantification of the cerebrospinal fluid (CSF) flow through the aqueduct of Sylvius by means of magnetic resonance imaging (MRI) is subject to interobserver variability due to the region of interest (ROI) selection. Our objective is to develop a semiautomatic measurement method to achieve reproducible quantitative analysis of CSF flow rate and stroke volume. Material and methods: MR examinations were performed using a 1.5 T scanner with a phase contrast sequence (velocity encoding [Venc] of 20 cm/s, FOV = 160, 3 mm slice thickness, image matrix size = 256×256, TR = 53 ms, TE = 11 ms, NSA = 2, flip angle = 15° and 23 frames per cardiac cycle with peripheral retrospective pulse gating). Our method was developed using MATLAB R7. Errors introduced by background offset and possible aliased pixels were automatically detected and corrected if necessary in order to calculate the flow parameters that characterize CSF dynamics. The semiautomatic seed method reproducibility was evaluated and compared with the radius method by two observers analysing 21 healthy subjects. Results: The measurements using the semiautomatic seed method reduced the interobservers variability (intra-class correlation [ICC] = 1.0 for stroke volume and for volumetric flow rate) versus the radius method (ICC = 0.46 for stroke volume and 0.65 for flow rate). Normal stroke volume (39.19 ± 20.13 μl/cycle), flow rate (3.81 ± 2.81 ml/min), maximal mean systolic velocity (5.27 ± 1.3 cm/s) and maximal mean diastolic velocity (4.20 ± 1.4 cm/s) were calculated with the half moon and aliasing corrected seed method. Conclusions: Semiautomatic measurements (seed method with half moon background and aliasing correction) allow a generalization of the calculus of flow parameters with great consistency and independency of the operator.


Aliasing correction Cerebrospinal fluid Magnetic resonance Phase imaging Segmentation algorithm 


  1. 1.
    Bradley WG, Scalzo D, Queralt J, Nitz WN, Atkinson DJ, Wong P (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198:523–529PubMedGoogle Scholar
  2. 2.
    Citrin CM, Sherman JL, Gangarosa RE, Scanlon D (1986) Physiology of the CSF flow-void sign – modification by cardiac gating. Am J Neuroradiol 7:1021–1024Google Scholar
  3. 3.
    Pelc NJ (1995) Flow quantification and analysis methods. Magn Reson Imaging Clin N Am 3:413–424PubMedGoogle Scholar
  4. 4.
    Lee JH, Lee HK, Kim JK, Kim HJ, Park JK, Choi CG (2004) CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging. Korean J Radiol 5:81–86PubMedCrossRefGoogle Scholar
  5. 5.
    Barkhof E, Kouwenhoven M, Scheltens P, Sprenger M, Algra P, Valk J (1994) Phase-contrast cine MR-imaging of normal aqueductal CSF flow – effect of aging and relation to CSF void on modulus MR. Acta Radiol 35:123–130PubMedCrossRefGoogle Scholar
  6. 6.
    Wolf RL, Ehman RL, Riederer SJ, Rossman PJ (1993) Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 30:82–91PubMedCrossRefGoogle Scholar
  7. 7.
    Bradley WG (1992) Magnetic resonance imaging in the evaluation of cerebrospinal fluid flow abnormalities. Magn Reson Q 8:169–196PubMedGoogle Scholar
  8. 8.
    Bradley WG, Kortman KE, Burgoyne B (1986) Flowing cerebrospinal-fluid in normal and hydrocephalic states – appearance on MR images. Radiology 159:611–616PubMedGoogle Scholar
  9. 9.
    Box FMA, Spilt A, Van Buchem MA, Van der Geest RJ, Reiber JHC (2003) Automatic model based contour detection and blood flow quantification in small vessels with velocity encoded magnetic resonance imaging. Invest Radiol 38:560–567CrossRefGoogle Scholar
  10. 10.
    Kim DS, Choi JU, Huh R, Yun PH, Kim DI (1999) Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Childs Nerv Syst 15:461–467CrossRefPubMedGoogle Scholar
  11. 11.
    Luetmer PH, Huston J, Friedman JA, Dixon GR, Petersen RC, Jack CR, McClelland RL, Ebersold MJ (2002) Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 50:534–542CrossRefPubMedGoogle Scholar
  12. 12.
    Baledent O, Feugeas MC, Peretti I (2001) Cerebrospinal fluid dynamics and relation with blood flow. A magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 7:368–377Google Scholar
  13. 13.
    Kozerke S, Botnar R, Oyre S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Automatic vessel segmentation using active contours in cine phase contrast flow measurements. J Magn Reson Imaging 10:41–51CrossRefPubMedGoogle Scholar
  14. 14.
    Yuan C, Lin E, Millard J, Hwang JN (1999) Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images. Magn Reson Imaging 17:257–266CrossRefPubMedGoogle Scholar
  15. 15.
    Alperin N, Lee SH (2003) PUBS: pulsatility-based segmentation of lumens conducting non-steady flow. Magn Reson Med 49:934–944CrossRefPubMedGoogle Scholar
  16. 16.
    Huang TY, Chung HW, Chen MY, Giiang LH, BSC, Chin SC, Lee CS, Cheng CY, Liu YJ (2004) Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology 233:603–608PubMedCrossRefGoogle Scholar
  17. 17.
    Enzmann DR, Pelc NJ (1992) Brain motion – measurement with phase-contrast MR imaging. Radiology 185:653–660PubMedGoogle Scholar
  18. 18.
    Nitz WR, Bradley WG, Watanabe AS, Lee RR, Burgoyne B, Osullivan RM, Herbst MD (1992) Flow dynamics of cerebrospinal-fluid – assessment with phase-contrast velocity MR imaging performed with retrospective cardiac gating. Radiology 183:395–405PubMedGoogle Scholar
  19. 19.
    Bhadelia RA, Bogdan AR, Wolpert SM (1995) Analysis of cerebrospinal-fluid flow wave-forms with gated phase-contrast MR velocity-measurements. Am J Neuroradiol 16:389–400PubMedGoogle Scholar
  20. 20.
    Thomsen C, Ståhlberg F, Stubgaard M, Nordell B (1990) Fourier analysis of cerebrospinal fluid flow velocities: MR imaging study. Radiology 177:659–665PubMedGoogle Scholar
  21. 21.
    Henk CB, Grampp S, Koller J, Schoder M, Frank H, Klaar U, Gomischek G, Mostbeck GH (2002) Elimination of errors caused by first-order aliasing in velocity encoded cine-MR measurements of postoperative jets after aortic coarctation: in vitro and in vivo validation. Eur Radiol 12:1523–1531CrossRefPubMedGoogle Scholar
  22. 22.
    Frayne R, Rutt BK (1993) Frequency-response of retrospectively gated phase-contrast MR-imaging – effect of interpolation. J Magn Reson Imaging 3:907–917PubMedCrossRefGoogle Scholar
  23. 23.
    Greil G, Geva T, Maier SE, Powell AJ (2002) Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J Magn Reson Imaging 15:47–54CrossRefPubMedGoogle Scholar
  24. 24.
    Debatin JF (1998) MR quantification of flow in abdominal vessels. Abdom Imaging 23:485–495CrossRefPubMedGoogle Scholar
  25. 25.
    Chang LH, Chen CY, Chen MY, Huang TY, Chung HW (2000) Normal and abnormal cerebrospinal fluid dynamics evaluated by optimized cine phase-contrast MR imaging. Chin J Radiol 25:191–195Google Scholar
  26. 26.
    Korosek FR, Turski PA (1997) Velocity and volume flow rate measurements using phase contrast magnetic resonance imaging. Int J Neuroradiol 3:203–318Google Scholar
  27. 27.
    Marco G, Idy PI, Didon PA, Baledent O, Onen F, Feugeas MC (2004) Intracranial fluid dynamics in normal and hydrocephalus states. J Comput Assist Tomogr 28:247–254CrossRefPubMedGoogle Scholar
  28. 28.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310CrossRefGoogle Scholar
  29. 29.
    Prieto L, Lamarca R, Casado A (1998) Assessment of the reliability of clinical findings: the intraclass correlation coefficient. Med Clin 110:142–145Google Scholar
  30. 30.
    Bartko J (1996) The intraclass correlation coefficient as a measure of reliability. Psychol Rep 19:3–11Google Scholar

Copyright information

© ESMRMB 2006

Authors and Affiliations

  • Yudy Natalia Flórez
    • 1
  • David Moratal
    • 1
    • 2
  • Juana Forner
    • 2
  • Luis Martí-Bonmatí
    • 2
    • 3
  • Estanislao Arana
    • 2
  • Ulises Guajardo-Hernández
    • 3
  • José Millet-Roig
    • 1
  1. 1.Grupo BET (Bioingeniería, Electrónica y Telemedicina)Universitat Politècnica de ValènciaValènciaSpain
  2. 2.Servicio de RadiologíaResonancia MagnéticaValenciaSpain
  3. 3.Hospital Universitari Dr. PesetValenciaSpain

Personalised recommendations