Assignment of the 2.03 ppm resonance in in vivo 1H MRS of human brain tumour cystic fluid: contribution of macromolecules

  • A. P. Candiota
  • C. Majós
  • A. Bassols
  • M. E. Cabañas
  • J. J. Acebes
  • M. R. Quintero
  • C. Arús
Article

Abstract

MRI and MRS are established techniques for the evaluation of intracranial mass lesions and cysts. The 2.03 ppm signal recorded in their 1H-MRS spectra is often assigned to NAA from outer volume contamination, although it has also been detected in non-infiltrating tumours and large cysts. We have investigated the molecular origin of this resonance in ten samples of cystic fluids from human brain tumours. The NMR detected content of the 2.03 ppm resonance in 136 ms echo time spectra, assuming an N- CH3 origin, was 3.19 ± 1.01 mM. Only one third (34 ± 12%) of the N-acetyl containing compound (NAC) signal could be extracted by perchloric acid (PCA) indicating that most of it originated in a macromolecular PCA-insoluble component. Chemical analysis of the cyst fluids showed that sialic acid bound to macromolecules would account for 64.3% and hexuronic containing compounds for 29.2% of the NMR-detectable ex vivo signal, 93.4% of the signal at TE 136 ms. Lactate content measured by NMR (6.4 ± 4.4 mM) and the predominance of NAC originating in sialic acid point to a major origin from tumour rather than from plasma for this 2.03 ppm resonance.

Keywords

Brain neoplasms Cyst N-acetyl neuraminic acid N-acetyl aspartate 

References

  1. 1.
    Bernstein M, Berger MS (2000) Neuro-oncology: the essentials. Thieme Medical, New York, pp 310, 330, 385, 413Google Scholar
  2. 2.
    Poptani H, Gupta RK, Jain VK, Roy R, Pandey R (1995) Cystic intracranial mass lesions: possible role of in vivo MR spectroscopy in its differential diagnosis. Magn Reson Imaging 13:1019–1029CrossRefPubMedGoogle Scholar
  3. 3.
    Martinez-Perez I, Moreno A, Alonso J, Aguas J, Conesa G, Capdevila A, Arús C (1997) Diagnosis of brain abscess by magnetic resonance spectroscopy. Report of two cases. J Neurosurg 86:708–713Google Scholar
  4. 4.
    Grand S, Passaro G, Ziegler A, Esteve F, Boujet C, Hoffmann D, Rubin C, Segebarth C, Décorps M, Le Bas JF, Rémy C (1999) Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy–-initial results. Radiology 213:785–793Google Scholar
  5. 5.
    Burtscher IM, Holtås S (1999) In vivo proton MR spectroscopy of untreated and treated brain abscesses. AJNR Am J Neuroradiol 20:1049–1053Google Scholar
  6. 6.
    Lohle PNM, Wurzer HAL, Seelen PJ, Kingma LM, Go KG (1998) The pathogenesis of cysts accompanying intra-axial primary and metastatic tumors of the central nervous system. J Neurooncol 40:277–285Google Scholar
  7. 7.
    Veerman ECI, Go KG, Molenaar WM, Niew Amerongen AV, Vissink A (1998) On the chemical characterization of colloid cyst contents. Acta Neurochir (Wien) 140:303–307Google Scholar
  8. 8.
    Chang K-H, Song IC, Kim SH, Han MH, Kim HD, Seong SO, Jung HW, Han MC (1998) In vivo single voxel proton MR spectroscopy in intracranial cystic masses. AJNR Am J Neuroradiol 19:401–405Google Scholar
  9. 9.
    Howe FA, Opstad KS (2003) 1H MR spectroscopy of brain tumours and masses. NMR Biomed 16:123–131CrossRefPubMedGoogle Scholar
  10. 10.
    Tate AR, Majós C, Moreno A, Howe FA, Griffiths JR, Arús C (2003) Automated classification of short echo time in in vivo 1H Brain tumor spectra: a multicenter study. Magn Reson Med 49:29–36CrossRefPubMedGoogle Scholar
  11. 11.
    Majós C, Cucurella G, Aguilera C, Coll S, Pons LC (1999) Intraventricular meningiomas: MR Imaging and MR spectroscopic findings in two cases. AJNR Am J Neuroradiol 20:882–885Google Scholar
  12. 12.
    Klose U (1990) In vivo proton spectroscopy in presence of eddy currents. Magn Reson Med 14:26–30PubMedGoogle Scholar
  13. 13.
    van den Boogaart A, van Ormondt D, Pijnappel WWF, de Beer R, Ala-Korpela M (1994) In: McWhirter JG (ed.) Mathematics in signal processing III, Clarendon, Oxford, pp. 175–195Google Scholar
  14. 14.
    Barba I, Cabañas ME, Arús C (1999) The relationship between nuclear magnetic resonance-visible lipids, lipid droplets and cell proliferation in cultured C6 cells. Cancer Res 59:1861–1868PubMedGoogle Scholar
  15. 15.
    Gueron M, Plateau P, Decorps M (1991) Solvent signal suppression in NMR. Prog Nucl Magn Reson Spectrosc 20:137–209Google Scholar
  16. 16.
    Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691Google Scholar
  17. 17.
    Rémy C, Arús C, Ziegler A, Sam Laï E, Moreno A, Le Fur Y, Décorps M (1994) In vivo, ex vivo, and in vitro one- and two-dimensional nuclear magnetic resonance spectroscopy of an intracerebral glioma in rat brain: assignment of resonances. J Neurochem 62:166–179Google Scholar
  18. 18.
    Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15:37–44CrossRefPubMedGoogle Scholar
  19. 19.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin–Phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  20. 20.
    Bitter T, Muir HM (1962) A modified uronic acid carbazole reaction. Anal Biochem 4:330–334PubMedGoogle Scholar
  21. 21.
    Jourdian GW, Dean L, Roseman S (1971) The sialic acids. XI: a periodate- resorcinol method for the quantitative estimation of free sialic acids and their glycosides. J Biol Chem 246(2):430–435PubMedGoogle Scholar
  22. 22.
    Pearce EIF, Major GN (1978) The colorimetric analysis of sialic acid in human saliva and bovine salivary mucin. J Dent Res 57(11–12):995–1002Google Scholar
  23. 23.
    Pasternack SG, Veis A, Breen M (1974) Solvent-dependent changes in proteoglycan subunit conformation in aqueous guanidine hydrochloride solutions. J Biol Chem 249:2206–2211PubMedGoogle Scholar
  24. 24.
    Kauppinen RA, Niskanen T, Hakumaki J, Williams SR (1993) Quantitative analysis of 1H NMR detected proteins in the rat cerebral cortex in vivo and in vitro. NMR Biomed 6:242–247PubMedGoogle Scholar
  25. 25.
    Baràny M, Glonek T (1979) Phosphorus-31 Nuclear magnetic resonance of contractile systems. Methods enzymol 85:624–677Google Scholar
  26. 26.
    Evanochko WT, Sakai TT, Ng TC, Krishna MR, Kim HD, Zeidler RB, Ghanta VK, Brockman RW, Schiffer LM, Braunschweiger PG, Glickson JD (1984) NMR study of in vivo RIF-1 tumors. Analysis of perchloric acid extracts and indentification of 1H, 31P, and 13C resonances. Biochimica et Biophysica Acta 805:104–116CrossRefPubMedGoogle Scholar
  27. 27.
    Fan TWM, Higashi RM, Lane AN, Jardetzky O (1986) Combined use of 1H-NMR and GC-MS for metabolite monitoring and in vivo 1H-NMR assignments. Biochimica et Biophysica Acta 882:154–167CrossRefPubMedGoogle Scholar
  28. 28.
    Burri R, Bigler P, Straehl P, Posse S, Colombo JP, Herschkowitz N (1990) Brain development: 1H magnetic resonance spectroscopy of rat brain extracts compared with chromatographic methods. Neurochem Res 15:1009–1016PubMedGoogle Scholar
  29. 29.
    Sze DY, Jardetzky O (1990) Determination of metabolite and nucleotide concentrations in proliferating lymphocytes by 1H-NMR of acid extracts. Biochimica et Biophysica Acta 1054:181–197CrossRefPubMedGoogle Scholar
  30. 30.
    Brown JC, Mills GA, Sadler PJ, Walker V (1989) 1H NMR studies of urine from premature and sick babies. Magn Reson Med 11:193–201PubMedGoogle Scholar
  31. 31.
    Szliwowski HB, Cumings JN (1961) The diagnostic value of the chemical examination of cerebral cyst fluids. Brain 84:204–212PubMedGoogle Scholar
  32. 32.
    Lohle PNM, Wurzer HAL, Seelen PJ, Kingma LM, Go KG (1998) Analysis of fluid in cysts accompanying various primary and metastatic brain tumours: proteins, lactate and pH. Acta Neurochir (Wien) 140:14–19Google Scholar
  33. 33.
    Jungreis CA, Chandra R, Kricheff I, Chuba JV (1988) In vitro magnetic resonance properties of CNS neoplasms and associated cysts. Invest Radiol 23:12–16.Google Scholar
  34. 34.
    Tate AR, Griffiths JR, Martínez-Perez I, Moreno A, Barba I, Cabanas ME, Watson D, Alonso J, Bartomeus F, Isamat F, Ferrer I, Vila F, Ferrer E, Capdevila A, Arús C (1998) Towards a method for automated classification of 1H MRS spectra from brain tumours. NMR Biomed 11:177–191CrossRefPubMedGoogle Scholar
  35. 35.
    Burtscher IM, Holtås S (2001) Proton magnetic resonance spectroscopy in brain tumours: clinical applications. Neuroradiology 43:345–352Google Scholar
  36. 36.
    Shukla-Dave A, Gupta RK, Roy R, Husain N, Paul L, Venkatesh SK, Rashid MR, Chhabra DK, Husain M (2001) Prospective evaluation of in vivo proton MR spectroscopy in differentiation of similar appearing intracranial cystic lesions. Magn Reson Imaging 19:103–110CrossRefPubMedGoogle Scholar
  37. 37.
    Go KG (1997) The normal and pathological physiology of brain water. Adv Tech Stand Neurosurg 23:47–142PubMedGoogle Scholar
  38. 38.
    Bell JD, Brown JC, Nicholson JK, Sadler PJ (1987) Assignment of resonances for ‘acute-phase’ glycoproteins in high resolution proton NMR spectra of human blood plasma. FEBS Lett 215:311–315CrossRefPubMedGoogle Scholar
  39. 39.
    Torri GM, Torri J, Gulian JM, Vion-Dury J, Viout P, Cozzone PJ (1999) Magnetic resonance spectroscopy of serum and acute-phase proteins revisited: a multiparametric statistical analysis of metabolite variations in inflammatory, infectious and miscellaneous diseases. Clin Chim Acta 279:77–96CrossRefPubMedGoogle Scholar
  40. 40.
    Badcock G, Pigott C, Goepel J, Andrews P (1999) The human embryonal carcinoma marker antigen TRA-1–60 is a sialylated keratan sulfate proteoglycan. Cancer Res 59:4715–4719PubMedGoogle Scholar
  41. 41.
    Heaney-Kieras J, Bystryn J-C (1986) Identification and purification of 115- and 125-Kilodalton cell surface human melanoma-associated antigens. J Natl Cancer Inst 77:643–648PubMedGoogle Scholar
  42. 42.
    Kuesel AC, Sutherland GR, Halliday W, Smith IC (1994) 1H MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue. NMR Biomed 7:149–155PubMedGoogle Scholar
  43. 43.
    Hanstock CC, Rothman DL, Howseman A, Lantos G, Novotny EJ, Petroff OAC, Prichard JW, Shulman RG (1989) In vivo determination of NAA concentration in the human brain using the proton aspartyl resonance. In: Book of abstracts: Society of Magnetic Resonance in Medicine, Berkeley, p 442Google Scholar
  44. 44.
    Gill SS, Thomas DGT, Van Bruggen N, Gadian DG, Peden CJ, Bell JD, Cox J, Menon DK, Iles RA, Bryant DJ, Coutts GA (1990) Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 4:497–504Google Scholar
  45. 45.
    Gadian DG, Bates TE, Williams SR, Bell JD, Austin SJ, Connelly A (1991) Approaches to editing, assignment and interpretation of proton spectra. NMR Biomed 4:85–89PubMedGoogle Scholar
  46. 46.
    Nadler JV, Cooper JR (1972) N-acetyl-L-aspartic acid content of human neural tumours and bovine peripheral nervous tissues. J Neurochem 19:313–319PubMedGoogle Scholar
  47. 47.
    Kinoshita Y, Kajiwara H, Yokota A, Koga Y (1994) Proton magnetic resonance spectroscopy of brain tumors: an in vitro study. Neurosurgery 35:606–614PubMedGoogle Scholar
  48. 48.
    Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 98:3352–3357CrossRefPubMedGoogle Scholar
  49. 49.
    Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4:45–60CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2004

Authors and Affiliations

  • A. P. Candiota
    • 1
  • C. Majós
    • 2
  • A. Bassols
    • 3
  • M. E. Cabañas
    • 4
  • J. J. Acebes
    • 5
  • M. R. Quintero
    • 1
  • C. Arús
    • 1
  1. 1.Departament de Bioquímica i Biologia Molecular Unitat de Bioquímica de Ciències Edifici CsUniversitat Autònoma deBarcelonaSpain
  2. 2.Institut de Diagnóstic per la Imatge (IDI)Hospital Duran i Reynals CSU de BellvitgeBarcelonaSpain
  3. 3.Departament de Bioquímica i Biologia MolecularUnitat de Bioquímica de VeterinàriaEdificiSpain
  4. 4.SeRMNEdifici Cs Universitat Autónoma deBarcelonaSpain
  5. 5.Department of NeurosurgeryHospital Prínceps d’Espanya CSU de BellvitgeBarcelonaSpain

Personalised recommendations