Advertisement

Exposure to anti-mosquito insecticides utilized in rice fields affects survival of two non-target species, Ischnura elegans and Daphnia magna

  • Erica Subrero
  • Susanna Sforzini
  • Aldo Viarengo
  • Marco Cucco
Article

Abstract

Insecticides are commonly utilized to control mosquito larvae in rice fields. They can, however, have negative effects on both vertebrates and non-target invertebrate species. In this study, we examined the effects of pulse exposition to different concentrations of cypermethrin (0.15, 0.015, 0.0015 mg/L) and diflubenzuron (0.15, 0.015, 0.0015 mg/L) on egg hatching rate, larval growth, and larval survival in a damselfly, Ischnura elegans, and on survival of a crustacean, Daphnia magna. Insecticide exposure had significant negative effects on hatching rate in damselfly eggs. Exposed damselfly larvae also grew less and showed a higher mortality than control larvae. In Daphnia, the acute toxicity test (ISO 6341 in Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test, Int Organ Stand Geneve, Geneva, 2012) showed an increased inhibition of mobility in the presence of insecticides. We observed a proportional response in relation to insecticide concentration, such that the highest exposure levels showed the largest reduction of vital performances. Our highest tested values correspond to those currently employed in agriculture. This study suggests that exposure to two common insecticides strongly affects non-target invertebrates even at very low concentration levels (cypermethrin 0.0015 mg/L and diflubenzuron 0.0015 mg/L).

Keywords

Cypermethrin Diflubenzuron Odonate Damselfly Water flea 

Notes

Acknowledgements

We thank Emiliano Tambornini and Daria Prini for assistance in damselfly rearing. The research is original and was supported by an Università del Piemonte Orientale “Ricerca locale 2016” Grant.

References

  1. Abe FR, Coleone AC, Machado AA, Goncalves Machado-Neto J (2014) Ecotoxicity and environmental risk assessment of larvicides used in the control of Aedes aegypti to Daphnia magna (Crustacea, Cladocera). J Toxicol Environ Health A 77:37–45.  https://doi.org/10.1080/15287394.2014.865581 CrossRefPubMedGoogle Scholar
  2. Agnelli P, Bellucci V, Bianco PM, Campanella L, Jacomini C, Modonesi CM, Panizza C, Pamino G (2015) Impatto sugli ecosistemi e sugli esseri viventi delle sostanze sintetiche utilizzate nella profilassi anti-zanzara. Quad Ambient e Soc ISPRA, Roma 10:1–222Google Scholar
  3. Andrew R (2012) Effect of paper mill effluent on the egg chorion of the dragonfly Anax guttatus (Burmeister) (Anisoptera: Aeshnidae). Odonatologica 41:31–36Google Scholar
  4. Aznar R, Sánchez-Brunete C, Albero B, Moreno-Ramón H, Tadeo JL (2017) Pyrethroids levels in paddy field water under Mediterranean conditions: measurements and distribution modelling. Paddy Water Environ, 15:307–316.  https://doi.org/10.1007/s10333-016-0550-2 CrossRefGoogle Scholar
  5. Barata C, Varo I, Navarro JC, Arun S, Porte C (2005) Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol C 140:175–186.  https://doi.org/10.1016/j.cca.2005.01.013 CrossRefGoogle Scholar
  6. Barry MJ (1996) Effects of an organochlorine pesticide on different levels of biological organization in Daphnia. Ecotoxicol Environ Saf 34:239–251.  https://doi.org/10.1006/eesa.1996.0069 CrossRefPubMedGoogle Scholar
  7. Beketov MA (2004) Comparative sensitivity to the insecticides deltamethrin and esfenvalerate of some aquatic insect larvae (Ephemeroptera and Odonata) and Daphnia magna. Russ J Ecol 35:200–204.  https://doi.org/10.1023/B:RUSE.0000025972.29638.46 CrossRefGoogle Scholar
  8. Beketov M, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27:461–470CrossRefGoogle Scholar
  9. Berenzen N, Kumke T, Schulz HK, Schulz R (2005) Macroinvertebrate community structure in agricultural streams: impact of runoff-related pesticide contamination. Ecotoxicol Environ Saf 60:37–46.  https://doi.org/10.1016/j.ecoenv.2003.10.010 CrossRefPubMedGoogle Scholar
  10. Borgeraas J, Hessen DO (2002) Variations of antioxidant enzymes in Daphnia species and populations as related to ambient UV exposure. Hydrobiologia 477:15–30CrossRefGoogle Scholar
  11. Bots J, De Bruyn L, Snijkers T, Van den Branden B, Van Gossum H (2010) Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum. Environ Pollut 158:901–905.  https://doi.org/10.1016/j.envpol.2009.09.016 CrossRefPubMedGoogle Scholar
  12. Boudot J-P, Kalkman VJ (2015) Atlas of the European dragonflies and damselflies. KNNV Publishing, ZeistGoogle Scholar
  13. Buckland-Nicks A, Hillier NK, Avery TS, O’Driscoll NJ (2014) Mercury bioaccumulation in dragonflies (Odonata: Anisoptera): examination of life stages and body regions. Environ Toxicol Chem 33:2047–2054.  https://doi.org/10.1002/etc.2653 CrossRefPubMedGoogle Scholar
  14. Carvalho RN, Arukwe A, Ait-Aissa S, Bado-Nilles A, Balzamo S, Baun A, Belkin S, Blaha L, Brion F, Conti D, Creusot N, Essig Y, Ferrero VEV, Flander-Putrle VV, Furhacker M, Grillari-Voglauer R, Hogstrand C, Jonas A, Kharlyngdoh JB et al (2014) Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they? Toxicol Sci 141:218–233.  https://doi.org/10.1093/toxsci/kfu118 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chang X, Zhai B, Wang M, Wang B (2007) Relationship between exposure to an insecticide and fluctuating asymmetry in a damselfly (Odonata, Coenagriidae). Hydrobiologia 586:213–220.  https://doi.org/10.1007/s10750-007-0620-y CrossRefGoogle Scholar
  16. Chang X, Zhai B, Wang B, Sun C (2009) Effects of the mixture of avermectin and imidacloprid on mortality and developmental stability of Copera annulata (Odonata: Zygoptera) larvae. Biol J Linn Soc 96:44–50.  https://doi.org/10.1111/j.1095-8312.2008.01036.x CrossRefGoogle Scholar
  17. Che Salmah MR, Al-Shami SA, Md Shah ASR, Ahmad AH, Man A (2012) Effects of herbicides on Odonata communities in a rice agroecosystem. Toxicol Environ Chem 94:1188–1198.  https://doi.org/10.1080/02772248.2012.689837 CrossRefGoogle Scholar
  18. Chen CD, Seleena B, Chiang YF, Lee HL (2008) Field evaluation of the bioefficacy of diflubenzuron (Dimilin) against container-breeding Aedes sp. mosquitoes. Trop Biomed 25:80–86PubMedGoogle Scholar
  19. Chovanec A, Waringer J (2001) Ecological integrity of river-floodplain systems. Assessment by dragonfly surveys (Insecta: Odonata). Regul Rivers Res Manag 17:493–507.  https://doi.org/10.1002/rrr.664 CrossRefGoogle Scholar
  20. Chovanec A, Schindler M, Waringer J, Wimmer R (2015) The Dragonfly Association Index (Insecta: Odonata)—a tool for the type-specific assessment of lowland rivers. River Res Appl 31:627–638.  https://doi.org/10.1002/rra.2760 CrossRefGoogle Scholar
  21. Christensen BT, Lauridsen TL, Ravn HW, Bayley M (2005) A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to cypermethrin. Aquat Toxicol 73:210–220.  https://doi.org/10.1016/j.aquatox.2005.03.011 CrossRefPubMedGoogle Scholar
  22. Corbet PS, Brooks SJ (2008) Dragonflies. HarperCollins, LondonGoogle Scholar
  23. Cordoba-Aguilar A (2008) Dragonflies and damselflies. Model organisms for ecological and evolutionary research. Oxford University Press, OxfordCrossRefGoogle Scholar
  24. Crossland NO, La Point TW (1992) The design of mesocosm experiments. Environ Toxicol Chem 11:1–4.  https://doi.org/10.1897/1552-8618(1992)11%5b1:TDOME%5d2.0.CO;2 CrossRefGoogle Scholar
  25. D’Amico F, Darblade S, Avignon S, Blanc-Manel S, Ormerod SJ (2004) Odonates as indicators of shallow lake restoration by liming: comparing adult and larval responses. Restor Ecol 12:439–446.  https://doi.org/10.1111/j.1061-2971.2004.00319.x CrossRefGoogle Scholar
  26. De Block M, Stoks R (2008) Short-term larval food stress and associated compensatory growth reduce adult immune function in a damselfly. Ecol Entomol 33:796–801.  https://doi.org/10.1111/j.1365-2311.2008.01024.x CrossRefGoogle Scholar
  27. Debecker S, Dinh KV, Stoks R (2017) Strong delayed interactive effects of metal exposure and warming: latitude-dependent synergisms persist across metamorphosis. Environ Sci Technol 51:2409–2417.  https://doi.org/10.1021/acs.est.6b04989 CrossRefPubMedGoogle Scholar
  28. Diana SG, Resetarits WJ, Schaeffer DJ, Beckmen KB, Beasley VR (2000) Effects of atrazine on amphibian growth and survival in artificial aquatic communities. Environ Toxicol 19:2961–2967.  https://doi.org/10.1002/etc.5620191217 CrossRefGoogle Scholar
  29. Duchet C, Mitie Inafuku M, Caquet T, Larroque M, Franquet E, Lagneau C, Lagadic L (2011) Chitobiase activity as an indicator of altered survival, growth and reproduction in Daphnia pulex and Daphnia magna (Crustacea: Cladocera) exposed to spinosad and diflubenzuron. Ecotoxicol Environ Saf 74:800–810.  https://doi.org/10.1016/j.ecoenv.2010.11.001 CrossRefPubMedGoogle Scholar
  30. Elphick C (2007) Waterbirds in rice fields: introduction and global overview. In: Rice and waterbirds: science, management, and conservation. 31th Annual Meeting of the Waterbird Society. Barcelona, Spain, p 1Google Scholar
  31. EPA (1997) Reregistration eligibility decision (RED) diflubenzuron. Environ Prot Agency Off Pestic Programs 1–199. US Environmental Protection Agency, Washington D.C.Google Scholar
  32. European Union Competent Authority Report (2007) Diflubenzuron. Work Programme for review of active substances in biocidal products pursuant to Council Directive 98/8/EC. Kemikalienispektionen Swedish Chemical Agency, Document 1:1–46Google Scholar
  33. Fasola M, Ruiz X (1996) The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Colon Waterbirds 19:122–128CrossRefGoogle Scholar
  34. Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758.  https://doi.org/10.1126/science.1236281 CrossRefPubMedGoogle Scholar
  35. Feo M, Eljarrat E, Barceló D (2010a) A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples. J Chromatogr A 1217:2248–2253.  https://doi.org/10.1016/j.chroma.2010.02.018 CrossRefPubMedGoogle Scholar
  36. Feo M, Ginebreda A, Eljarrat E, Barceló D (2010b) Presence of pyrethroid pesticides in water and sediments of Ebro River Delta. J Hydrol 393:156–162.  https://doi.org/10.1016/j.jhydrol.2010.08.012 CrossRefGoogle Scholar
  37. Fischer SA, Hall LW (1992) Environmental concentrations and aquatic toxicity data on diflubenzuron (dimilin). Crit Rev Toxicol 22:45–79.  https://doi.org/10.3109/10408449209145321 CrossRefPubMedGoogle Scholar
  38. Fontana-Bria L, Selfa J, Tur C, Frago E (2017) Early exposure to predation risk carries over metamorphosis in two distantly related freshwater insects. Ecol Entomol 42:255–262.  https://doi.org/10.1111/een.12382 CrossRefGoogle Scholar
  39. Fox J (2005) The R Commander: a basic-statistics graphical user interface to R. J Stat Softw 14:1–42Google Scholar
  40. Fox J, Carvalho MS (2012) The RcmdrPlugin.survival package: extending the R Commander interface to survival analysis. J Stat Softw 49:1–32CrossRefGoogle Scholar
  41. Friberg-Jensen U, Wendt-Rasch L, Woin P, Christoffersen K (2003) Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions. I. Direct and indirect effects on abundance measures of organisms at different trophic levels. Aquat Toxicol 63:357–371.  https://doi.org/10.1016/S0166-445X(02)00201-1 CrossRefPubMedGoogle Scholar
  42. Funk A, Reckendorfer W, Kucera-Hirzinger V, Schiemer F (2009) Aquatic diversity in a former floodplain: remediation in an urban context. Ecol Eng 35:1476–1484CrossRefGoogle Scholar
  43. Gaino E, Piersanti S, Rebora M (2008) Egg envelope synthesis and chorion modification after oviposition in the dragonfly Libellula depressa (Odonata, Libellulidae). Tissue Cell 40:317–324.  https://doi.org/10.1016/j.tice.2008.02.005 CrossRefPubMedGoogle Scholar
  44. Hardersen S, Wratten SD (2000) Sensitivity of aquatic life stages of Xanthocnemis zealandica (Odonata: Zygoptera) to azinphos-methyl and carbaryl. New Zeal J Mar Freshw Res 34:117–123CrossRefGoogle Scholar
  45. Heintzman LJ, Anderson TA, Carr DL, McIntyre NE (2015) Local and landscape influences on PAH contamination in urban stormwater. Landsc Urban Plan 142:29–37.  https://doi.org/10.1016/j.landurbplan.2015.05.009 CrossRefGoogle Scholar
  46. Hurd MK, Perry SA, Perry WB (1996) Nontarget effects of a test application of diflubenzuron to the forest canopy on stream macroinvertebrates. Environ Toxicol Chem 15:1344–1351CrossRefGoogle Scholar
  47. IPCS (1992) Alpha cypermethrin. Environmental health criteria, vol 142. World Health Organization, GenevaGoogle Scholar
  48. IPCS (1995) Diflubenzuron. Health and safety guide, vol 99. World Health Organization, GenevaGoogle Scholar
  49. IPSRA (2018) Rapporto nazionale pesticidi nelle acque, dati 2015–2016. Rapporti 282/2018. Istituto Superiore per la Protezione e la Ricerca Ambientale, RomaGoogle Scholar
  50. ISO 6341 (2012) Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test. Int Organ Stand Geneve, GenevaGoogle Scholar
  51. Janssens L, Van Dinh K, Stoks R (2014) Extreme temperatures in the adult stage shape delayed effects of larval pesticide stress: a comparison between latitudes. Aquat Toxicol 148:74–82.  https://doi.org/10.1016/j.aquatox.2014.01.002 CrossRefPubMedGoogle Scholar
  52. Jinguji H, Thuyet DQ, Uéda T, Watanabe H (2013) Effect of imidacloprid and fipronil pesticide application on Sympetrum infuscatum (Libellulidae: Odonata) larvae and adults. Paddy Water Environ, 11:277–284.  https://doi.org/10.1007/s10333-012-0317-3 CrossRefGoogle Scholar
  53. Kashian DR, Dodson SI (2002) Effects of common-use pesticides on developmental and reproductive processes in Daphnia. Toxicol Ind Health 18:225–235.  https://doi.org/10.1191/0748233702th146oa CrossRefPubMedGoogle Scholar
  54. Kim Y, Jung J, Oh S, Choi K (2008) Aquatic toxicity of cartap and cypermethrin to different life stages of Daphnia magna and Oryzias latipes. J Environ Sci Health B 43:56–64.  https://doi.org/10.1080/03601230701735029 CrossRefPubMedGoogle Scholar
  55. Konstantinou IK, Hela DG, Albanis TA (2006) The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environ Pollut 141:555–570.  https://doi.org/10.1016/j.envpol.2005.07.024 CrossRefPubMedGoogle Scholar
  56. Korytko PJ, Scott JG (1998) CYP6D1 protects thoracic ganglia of houseflies from the neurotoxic insecticide cypermethrin. Arch Insect Biochem Physiol 37:57–63.  https://doi.org/10.1002/(sici)1520-6327(1998)37:1%3c57:aid-arch7%3e3.0.co;2-s CrossRefPubMedGoogle Scholar
  57. Lakota S, Raszka A, Utracki T, Chmiel Z (1989) Side-effect of deltamethrin and cypermethrin in the environment of water biocenoses. Organika 1987–1988:71–77Google Scholar
  58. LeBlanc GA (2016) Retrospective: acute toxicity of priority pollutants. Bull Environ Contam Toxicol 97:301–302.  https://doi.org/10.1007/s00128-016-1859-7 CrossRefPubMedGoogle Scholar
  59. Lewis KA, Tzilivakis J, Warner DJ, Green A (2016) An international database for pesticide risk assessments and management. Hum Ecol Risk Assess Int J 22:1054–1064.  https://doi.org/10.1080/10807039.2015.1133242 CrossRefGoogle Scholar
  60. Lourenço PM, Piersma T (2009) Waterbird densities in South European rice fields as a function of rice management. Ibis (Lond 1859) 151:196–199.  https://doi.org/10.1111/j.1474-919x.2008.00881.x CrossRefGoogle Scholar
  61. Malaj E, von der Ohe PC, Grote M, Kühne R, Mondy CP, Usseglio-Polatera P, Brack W, Schäfer RB (2014) Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc Natl Acad Sci 111:9549–9554.  https://doi.org/10.1073/pnas.1321082111 CrossRefPubMedGoogle Scholar
  62. Miyamoto J, Hirano M, Takimoto Y, Hatakoshi M (1993) Insect growth-regulators for pest-control, with emphasis on juvenil-hormone analogs. Present status and future prospects. ACS Symp Ser 524:144–168CrossRefGoogle Scholar
  63. Negri A, Oliveri C, Sforzini S, Mignone F, Viarengo A, Banni M (2013) Transcriptional response of the mussel Mytilus galloprovincialis (Lam.) following exposure to heat stress and copper. PLoS ONE 8:e66802.  https://doi.org/10.1371/journal.pone.0066802 CrossRefPubMedPubMedCentralGoogle Scholar
  64. OECD (2004) Guideline for testing of chemicals. No. 202. Daphnia sp., acute immobilisation test. Organization for Economic Cooperation and Development, ParisCrossRefGoogle Scholar
  65. Pal A, Gin KYH, Lin AYC, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069.  https://doi.org/10.1016/j.scitotenv.2010.09.026 CrossRefPubMedGoogle Scholar
  66. Piersanti S, Rebora M, Salerno G, Cordero-Rivera A, Frati F (2015) A method for rearing a large number of damselflies (Ischnura elegans, Coenagrionide) in the laboratory. Int J Odonatol 18:125–136.  https://doi.org/10.1080/13887890.2015.1015179 CrossRefGoogle Scholar
  67. Pistocchi A, Vizcaino P, Hauck M (2009) A GIS model-based screening of potential contamination of soil and water by pyrethroids in Europe. J Environ Manag 90:3410–3421.  https://doi.org/10.1016/j.jenvman.2009.05.020 CrossRefGoogle Scholar
  68. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  69. Reynaldi S, Liess M (2005) Influence of duration of exposure to the pyrethroid fenvalerate on sublethal responses and recovery of Daphnia magna Straus. Environ Toxicol Chem 24:1160–1164.  https://doi.org/10.1897/04-218R.1 CrossRefPubMedGoogle Scholar
  70. Sahlén G, Ekestubbe K (2001) Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodivers Conserv 10:673–690.  https://doi.org/10.1023/A:1016681524097 CrossRefGoogle Scholar
  71. Savitz JD, Wright DA, Smucker RA (1994) Toxic effects of the insecticide diflubenzuron (dimilin(R)) on survival and development of nauplii of the estuarine copepod, Eurytemora affinis. Mar Environ Res 37:297–312.  https://doi.org/10.1016/0141-1136(94)90056-6 CrossRefGoogle Scholar
  72. Schäfer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382:272–285.  https://doi.org/10.1016/j.scitotenv.2007.04.040 CrossRefPubMedGoogle Scholar
  73. Schroer A, Belgers J, Brock T, Matser A, Maund S, Van den Brink P (2004) Comparison of laboratory single species and field population-level effects of the pyrethroid insecticide lambda-cyhalothrin on freshwater invertebrates. Arch Environ Contam Toxicol 46:324–335.  https://doi.org/10.1007/s00244-003-2315-3 CrossRefPubMedGoogle Scholar
  74. Seccacini E, Lucia A, Harburguer L, Zerba E, Licastro S, Masuh H (2008) Effectiveness of pyriproxyfen and diflubenzuron formulations as larvicides against Aedes aegypti. J Am Mosq Control Assoc 24:398–403.  https://doi.org/10.2987/5697.1 CrossRefPubMedGoogle Scholar
  75. Smith J, Samways MJ, Taylor S (2007) Assessing riparian quality using two complementary sets of bioindicators. Biodivers Conserv 16:2695–2713.  https://doi.org/10.1007/s10531-006-9081-2 CrossRefGoogle Scholar
  76. Stafford JD, Kaminski RM, Reinecke KJ (2007) Waterbirds in rice fields: introduction and global overview. In: 31th Annual meeting of the waterbird society rice and waterbirds: science, management, and conservation. Barcelona, Spain, p 2Google Scholar
  77. Stewart AJ (1996) Ambient bioassays for assessing water-quality conditions in receiving streams. Ecotoxicology 5:377–393.  https://doi.org/10.1007/BF00351953 CrossRefPubMedGoogle Scholar
  78. Stoks R, Cordoba-Aguilar A (2012) Evolutionary ecology of Odonata: a complex life cycle perspective. Annu Rev Entomol 57:249–265.  https://doi.org/10.1146/annurev-ento-120710-100557 CrossRefGoogle Scholar
  79. Stoks R, Debecker S, Van Dinh K, Janssens L (2015) Integrating ecology and evolution in aquatic toxicology: insights from damselflies. Freshw Sci 34:1032–1039.  https://doi.org/10.1086/682571 CrossRefGoogle Scholar
  80. Suhling F, Befeld S, Hausler M, Katzur K, Lepkojus S, Mesléard F (2000) Effects of insectcide applications on macroinvertebrate density and biomass in rice-fields in the Rhone-delta, France. Hydrobiologia 431:69–79CrossRefGoogle Scholar
  81. Sundaram KMS, Holmes SB, Kreutzweiser DP, Sundaram A, Kingsbury PD (1991) Environmental persistence and impact of diflubenzuron in a forest aquatic environment following aerial application. Arch Environ Contam Toxicol 20:313–324.  https://doi.org/10.1007/BF01064396 CrossRefGoogle Scholar
  82. Tang J, Siegfried B (1996) Comparative uptake of a pyrethroid and organophosphate insecticide by selected aquatic insects. Bull Environ Contam Toxicol 57:993–998.  https://doi.org/10.1007/s001289900288 CrossRefPubMedGoogle Scholar
  83. Tennekes HA, Sánchez-Bayo F (2013) The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 309:39–51.  https://doi.org/10.1016/j.tox.2013.04.007 CrossRefPubMedGoogle Scholar
  84. Therneau TM (2015) A package for survival analysis in S. Version 2.38. R Foundation for Statistical Computing, Vienna, Austria. https://cran.r-project.org/package=survival
  85. Tollett VD, Benvenutti EL, Deer LA, Rice TM (2009) Differential toxicity to Cd, Pb, and Cu in dragonfly larvae (Insecta: Odonata). Arch Environ Contam Toxicol 56:77–84.  https://doi.org/10.1007/s00244-008-9170-1 CrossRefPubMedGoogle Scholar
  86. Toumi H, Boumaiza M, Millet M, Radetski CM, Felten V, Fouque C, Férard JF (2013) Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera). Sci Total Environ 458–460:47–53.  https://doi.org/10.1016/j.scitotenv.2013.03.085 CrossRefPubMedGoogle Scholar
  87. van Dijk PP, Iskandar D, Inger RF, Lau MWN, Ermi Z, Baorong G, Dutta S, Manamendra-Arachchi K, de Silva A, Bordoloi S, Kaneko Y, Matsui M, Khan MS (2004) Fejervarya limnocharis. The IUCN Red List of Threatened Species 2004: e.T58275A86154107.  https://doi.org/10.2305/IUCN.UK.2004.RLTS.T58275A11747569.en
  88. Van Dinh K, Janssens L, Debecker S, Stoks R (2014) Temperature- and latitude-specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. J Appl Ecol 51:919–928.  https://doi.org/10.1111/1365-2664.12269 CrossRefGoogle Scholar
  89. Van Gossum H, Bots J, Snijkers T, Meyer J, Van Wassenbergh S, De Coen W, De Bruyn L (2009) Behaviour of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata) after long-term exposure to PFOS. Environ Pollut 157:1332–1336.  https://doi.org/10.1016/j.envpol.2008.11.031 CrossRefPubMedGoogle Scholar
  90. Van Praet N, Covaci A, Teuchies J, De Bruyn L, Van Gossum H, Stoks R, Bervoets L (2012) Levels of persistent organic pollutants in larvae of the damselfly Ischnura elegans (Odonata, Coenagrionidae) from different ponds in Flanders, Belgium. Sci Total Environ 423:162–167.  https://doi.org/10.1016/j.scitotenv.2012.02.045 CrossRefPubMedGoogle Scholar
  91. Van Praet N, De Bruyn L, De Jonge M, Vanhaecke L, Stoks R, Bervoets L (2014a) Can damselfly larvae (Ischnura elegans) be used as bioindicators of sublethal effects of environmental contamination? Aquat Toxicol 154:270–277.  https://doi.org/10.1016/j.aquatox.2014.05.028 CrossRefPubMedGoogle Scholar
  92. Van Praet N, De Jonge M, Blust R, Stoks R, Bervoets L (2014b) Behavioural, physiological and biochemical markers in damselfly larvae (Ischnura elegans) to assess effects of accumulated metal mixtures. Sci Total Environ 470–471:208–215.  https://doi.org/10.1016/j.scitotenv.2013.09.093 CrossRefPubMedGoogle Scholar
  93. Van Praet N, De Jonge M, Stoks R, Bervoets L (2014c) Additive effects of predator cues and dimethoate on different levels of biological organisation in the non-biting midge Chironomus riparius. Aquat Toxicol 155:236–243.  https://doi.org/10.1016/j.aquatox.2014.07.001 CrossRefPubMedGoogle Scholar
  94. Van Wijngaarden RPA, Brock TCM, Van Den Brink PJ (2005) Threshold levels for effects of insecticides in freshwater ecosystems: a review. Ecotoxicology 14:355–380.  https://doi.org/10.1007/s10646-004-6371-x CrossRefPubMedGoogle Scholar
  95. Wendt-Rasch L, Friberg-Jensen U, Woin P, Christoffersen K (2003) Effects of the pyrethroid insecticide cypermethrin on a freshwater community studied under field conditions. II. Direct and indirect effects on the species composition. Aquat Toxicol 63:373–389.  https://doi.org/10.1016/S0166-445X(02)00202-3 CrossRefPubMedGoogle Scholar
  96. Westergaard CR, Vahlgre L, Poulsen PD, Herlau R (2012) The effect of cypermethrin and copper on Daphnia magna. Thesis, Univ Roskild, Denmark, pp 1–72Google Scholar
  97. Weston DP, Holmes RW, You J, Lydy MJ, Gouda B, Gouda AA, Ayman A, Mazroai A, Al Mazroai LS, Laila S, Li HP, Chang J, Feng T, Gao XW, Chau NDG, Sebesvari Z, Amelung W, Renaud FG (2015) Differential effects of insecticides on mitochondrial membrane fluidity and ATPase activity between the wolf spider and the rice stem borer. Environ Sci Pollut Res 22:2574–2580.  https://doi.org/10.1007/s11356-014-4034-x CrossRefGoogle Scholar
  98. Williams P, Whitfield M, Biggs J, Fox G, Nicolet P, Shillabeer N, Sherratt T, Heneghan P, Jepson P, Maund S (2002) How realistic are outdoor microcosms? A comparison of the biota of microcosms and natural ponds. Environ Toxicol Chem 21:143–150CrossRefGoogle Scholar

Copyright information

© The International Society of Paddy and Water Environment Engineering and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.DISITUniversity of Piemonte OrientaleAlessandriaItaly

Personalised recommendations