Advertisement

Paddy and Water Environment

, Volume 16, Issue 2, pp 353–358 | Cite as

From science to application: field demonstrations to enhance sustainable rice production in the north of Vietnam—lessons from the LEGATO project

  • Van Sinh Nguyen
  • Hung Manh Nguyen
  • Anika Klotzbücher
  • Doris Vetterlein
  • Thimo Klotzbücher
  • Reinhold Jahn
  • Janina Schneiker
  • Manfred Türke
  • Oliver Fried
  • Erwin Bergmeier
  • Cornelia Sattler
  • Josef Settele
Article

Abstract

Two major human-made problems in rice production systems in the north of Vietnam concern the low plant-available silicon content of soils and the low biodiversity. The results of the LEGATO project suggest a change to an environmentally friendly rice production system that will help to recover biodiversity. We propose here a framework for a demonstration and dissemination model that will be exemplary for the farmers once it has been successfully realized. We advocate local-option models in different districts to demonstrate to farmers. The methods should be adapted to local and ecoregional differences in climate and land-use tradition, and they explicitly take into account soil care, organic fertilizer, manual weeding, native nectar-rich plant bunds, manual pest snail collection, hymenopteran nesting aids, and biodiversity and yield monitoring.

Keywords

Biodiversity Silicon Rice field North Vietnam 

Notes

Acknowledgements

The work has been funded in the frame of the LEGATO project (Settele et al. 2015; http://www.legato-project.net/), which is part of the BMBF (German Federal Ministry of Education and Research) Framework Program Research for Sustainable Development (FONA, FKZ: 01LL0917A). The work has been also supported by the VAST04.06/16-17 project of the Vietnam Academy of Science and Technology.

References

  1. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389CrossRefPubMedPubMedCentralGoogle Scholar
  2. De Oliveira JR, Koetz M, Bonfim-Silva EM, Araújo da Silva TJ (2016) Production and accumulation of silicon (Si) in rice plants under silicate fertilization and soil water tensions. Aust J Crop Sci 10(2):244–250Google Scholar
  3. Dobermann A, Fairhurst T (2000) Rice: nutrient disorders & nutrient management. International Rice Research Institute, ManilaGoogle Scholar
  4. Dominik C, Seppelt R, Horgan FG, Marquez L, Settele J, Vaclavik T (2017) Regional-scale effects override the influence of fine-scale landscape heterogeneity on rice arthropod communities. Agric Ecosyst Environ 246:269–278CrossRefGoogle Scholar
  5. Elawad SH, Green VE (1979) Silicon and the rice plant environment: a review of recent research. Riv Riso 28:235–253Google Scholar
  6. Epstein E (1999) Silicon. Annu Rev Plant Biol 50:641–664CrossRefGoogle Scholar
  7. Escalada MM, Heong KL, Huan NH, Mai V (1999) Communication and behavior change in rice farmers’ pest management: the case of using mass media in Vietnam. J Appl Commun 83:7CrossRefGoogle Scholar
  8. Fried O, Kühn I, Schrader J, Van Sinh Nguyen, Bergmeier E (2017) Plant diversity and community composition of rice agroecosystems in Vietnam and the Philippines. Phytocoenologia 47:49–66CrossRefGoogle Scholar
  9. Guntzer F, Keller C, Meunier JD (2012) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213CrossRefGoogle Scholar
  10. Han Y, Li P, Gong S, Yang L, Wen L, Hou M (2016) Defense responses in rice induced by Silicon amendment against infestation by the leaf folder Cnaphalocrocis medinalis. PLoS ONE 11(4):e0153918CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hass AL, Liese B, Heong KL, Settele J, Tscharntke T, Westphal C (2018) Plant-pollinator interactions and bee functional diversity are driven by agroforests in rice-dominated landscapes. Agric Ecosyst Environ 253:140–147CrossRefGoogle Scholar
  12. Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75(1):3–35CrossRefGoogle Scholar
  13. Huan NH, Chien HV, Quynh PV, Tan PS, Du PV, Escalada MM et al (2008) Motivating rice farmers in the Mekong Delta to modify pest management and related practices through mass media. Int J Pest Manag 54:339–346CrossRefGoogle Scholar
  14. Jones LHP, Handreck KA (1967) Silica in soils, plants and animals. Adv Agron 19:107–149CrossRefGoogle Scholar
  15. Kawashima R (1927) Influence of silica on rice blast disease. Jpn J Soil Sci Plant Nutr 1:86–91Google Scholar
  16. Klotzbücher T, Marxen A, Jahn R, Vetterlein D (2016) Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoil and plant silicon uptake. Nutr Cycl Agroecosyst 105:157–168CrossRefGoogle Scholar
  17. Lewin J, Reimann BEF (1969) Silicon and plant growth. Annu Rev Plant Physiol 20:289–304CrossRefGoogle Scholar
  18. Liang Y, Nikolic M, Bélanger R, Gong H, Song A (2015) Silicon in agriculture: from theory to practice. Springer, BerlinCrossRefGoogle Scholar
  19. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A et al (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808CrossRefPubMedGoogle Scholar
  20. Lux A, Luxová M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441CrossRefGoogle Scholar
  21. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  22. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M et al (2006) A silicon transporter in rice. Nature 440:688–691CrossRefPubMedGoogle Scholar
  23. Marxen A, Klotzbücher T, Jahn R, Kaiser K, Nguyen VS, Schmidt A et al (2016) Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398:153–163CrossRefGoogle Scholar
  24. Matoh T, Kairusmee P, Takahashi E (1986) Salt-induced damage to rice plants and alleviation effect of silicate. Soil Sci Plant Nutr 32:295–304CrossRefGoogle Scholar
  25. Matteson PC (2000) Insect pest management in tropical Asian irrigated rice. Annu Rev Entomol 45:549–574CrossRefPubMedGoogle Scholar
  26. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, WashingtonGoogle Scholar
  27. Natuhara Y (2013) Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecol Eng 56:97–106CrossRefGoogle Scholar
  28. Nguyen ST, Nguyen XC, Nguyen XH (2014) Impact of rice straw burning methods on soil temperature and microorganism distribution in the paddy soil ecosystems. ARPN J Agric Biol Sci 9(5):157–160Google Scholar
  29. Niveta J, Bhatia A, Pathak H (2014) Emission of air pollutants from crop residue Burning in India. Aerosol Air Qual Res 14:422–430Google Scholar
  30. Onodera I (1917) Chemical studies on rice blast. J Sci Agric Soc 180:606–617Google Scholar
  31. Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Philos Trans R Soc B 365:2959–2971CrossRefGoogle Scholar
  32. Roy RN, Misra RV (2003) Economic and environmental impact of improved nitrogen management in Asian rice-farming systems. In: Proceedings of the 20th session of the international rice commission, Bangkok, Thailand, 23–26 July 2002; http://www.fao.org/3/y4751e0k.htm#bm20. Accessed 16 Jan 2018
  33. Sann C, Theodorou P, Heong KL, Villareal S, Settele J, Vidal S, Westphal C (2018) Hopper parasitoids do not significantly benefit from non-crop habitats in rice production landscapes. Agric Ecosyst Environ 254:224–232CrossRefGoogle Scholar
  34. Savant NK, Snyder GH, Datnoff LE (1997) Silicon management and sustainable rice production. Adv Agron 58:151–199CrossRefGoogle Scholar
  35. Schmidt A, Auge H, Brandl R, Heong KL, Hotes S, Settele J et al (2015) Small-scale variability in the contribution of invertebrates to litter decomposition in tropical rice fields. Basic Appl Ecol 16:674–680CrossRefGoogle Scholar
  36. Schneiker J, Weisser WW, Settele J, Nguyen VS, Bustamante JV, Marquez L et al (2016) Is there hope for sustainable management of golden apple snails, a major invasive pest in irrigated rice? NJAS Wagening J Life Sci 79:11–21CrossRefGoogle Scholar
  37. Schrader J, Franzen M, Sattler C, Ferderer P, Westphal C (2018) Woody habitats promote pollinators and complexity of plant–pollinator interactions in homegardens located in rice terraces of the Philippine Cordilleras. Paddy Water Environ.  https://doi.org/10.1007/s10333-017-0612-0
  38. Settele J, Spangenberg JH, Heong KL, Burkhard B, Bustamante JV, Cabbigat J et al (2015) Agricultural landscapes and ecosystem services in south-east Asia—the LEGATO-project. Basic Appl Ecol 16:661–664CrossRefGoogle Scholar
  39. Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60CrossRefGoogle Scholar
  40. Soliveres S, van der Plas F, Manning P, Prati D, Gossner MM, Renner SC et al (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536:456–459CrossRefPubMedGoogle Scholar
  41. Spangenberg JH, Douguet J-M, Settele J, Heong KL (2015) Escaping the lock-in of continuous insecticide spraying in rice. Developing an integrated ecological and socio-political DPSIR analysis. Ecol Model 295:188–195CrossRefGoogle Scholar
  42. Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comments Agric Food Chem 2(2):99–102Google Scholar
  43. Takashi E (1995) Uptake mode and physiological functions of silica. Sci Rice Plant 2:58–71Google Scholar
  44. Tekken V, Spangenberg JH, Burkhard B, Escalada M, Stoll-Kleemann S, Truong Dao Thanh, Settele J (2017) “Things are different now”: farmer perceptions of cultural ecosystem services of traditional rice landscapes in Vietnam and the Philippines. Ecosyst Serv 25:153–166CrossRefGoogle Scholar
  45. Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst 45:471–493CrossRefGoogle Scholar
  46. Trembath-Reichert E, Wilson JP, McGlynn SE, Fischer WW (2015) Four hundred million years of silica biomineralization in land plants. PNAS 112:5449–5454CrossRefPubMedGoogle Scholar
  47. Tsujimoto Y, Muranaka S, Saito K, Asai H (2014) Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Saharan Africa. Field Crop Res 155:1–9CrossRefGoogle Scholar
  48. Westphal C, Vidal S, Horgan FG, Gurr GM, Escalada M et al (2015) Managing multiple ecosystem services with flower strips and participatory training in rice production landscapes. Basic Appl Ecol 16:681–689CrossRefGoogle Scholar
  49. Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565CrossRefGoogle Scholar
  50. Yu X, Kai A, Gaodi X, Chunxia L (2011) Evaluation of ecosystem services provided by 10 typical rice paddies in China. J Resour Ecol 2(4):328–337Google Scholar
  51. Zedler JB, Kercher S (2005) Wetland resources: status, ecosystem services, degradation, and restorability. Ann Rev Environ Resour 30:39–74CrossRefGoogle Scholar

Copyright information

© The International Society of Paddy and Water Environment Engineering and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Van Sinh Nguyen
    • 1
  • Hung Manh Nguyen
    • 1
  • Anika Klotzbücher
    • 2
    • 3
  • Doris Vetterlein
    • 2
  • Thimo Klotzbücher
    • 3
  • Reinhold Jahn
    • 3
  • Janina Schneiker
    • 4
  • Manfred Türke
    • 4
    • 6
    • 7
  • Oliver Fried
    • 5
  • Erwin Bergmeier
    • 5
  • Cornelia Sattler
    • 2
  • Josef Settele
    • 2
    • 6
    • 8
  1. 1.Institute of Ecology and Biological Resources, Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyCau GiayVietnam
  2. 2.Helmholtz Centre for Environmental Research – UFZHalleGermany
  3. 3.Institute of Agricultural and Nutritional SciencesMartin-Luther-University Halle-WittenbergHalleGermany
  4. 4.Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Center for Food and Life Sciences WeihenstephanTechnical University of MunichFreisingGermany
  5. 5.Albrecht-von-Haller-Institute of Plant SciencesUniversity of GoettingenGöttingenGermany
  6. 6.German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-LeipzigLeipzigGermany
  7. 7.Institute of BiologyLeipzig UniversityLeipzigGermany
  8. 8.Institute of Biological SciencesUniversity of the Philippines, Los Baños, CollegeLos BañosPhilippines

Personalised recommendations