Skip to main content

Advertisement

Log in

Clinical value of serum interleukin-18 and nitric oxide activities in patients with prostate cancer

  • Published:
The Chinese-German Journal of Clinical Oncology

Abstract

Objective

The aim of the study was to estimate the clinical value of serum interleukin-18 (IL-18) and nitric oxide (NO) activities in patients with prostate cancer.

Methods

The 50 patients with prostate cancer and 25 control subjects were measured in serum IL-18 by enzyme-linked immunosorbent assay (ELISA) and nitrate + nitrite level by an index of NO generation.

Results

Serum IL-18 and nitrate + nitrite levels were significantly higher in patients with prostate cancer when compared to the control subjects (P < 0.05). Serum IL-18 level was significantly higher in patients with stages B, C and D when compared to patients with stage A (P < 0.05). Serum IL-18 level was significantly higher in the metastatic patients compared with the nonmetastatic patients (P < 0.01). There was no difference in serum nitrate and nitrite level between metastatic and nonmetastatic patients (P > 0.05). The serum IL-18 and nitrate and nitrite levels decreased after patients underwent surgical resection.

Conclusion

Serum IL-18 level may be a useful marker to predict prognosis of patients with prostate cancer after surgery. Long-term follow- up is required to clarify this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li W, Yamamoto H, Kubo S, et al. Modulation of innate immunity by IL-18. J Reprod Immunol, 2009, 83: 101–105.

    Article  PubMed  CAS  Google Scholar 

  2. Loher F, Bauer C, Landauer N, et al. The interleukin-1 beta-converting enzyme inhibitor pralnacasan reduces dextran sulfate sodium-induced murine colitis and T helper 1 T-cell activation. J Pharmacol Exp Ther, 2004, 308: 583–590.

    Article  PubMed  CAS  Google Scholar 

  3. Robinson CM, O’Dee D, Hamilton T, et al. Cytokines involved in interferon-gamma production by human macrophages. J Innate Immun, 2009, 2: 56–65.

    Article  PubMed  Google Scholar 

  4. Ngoumou G, Schaefer D, Mattes J, et al. Interleukin-18 enhances the production of interferon-gamma (IFN-gamma) by allergen-specific and unspecific stimulated cord blood mononuclear cells. Cytokine, 2004, 25: 172–178.

    Article  PubMed  CAS  Google Scholar 

  5. Li W, Kubo S, Okuda A, et al. Effect of IL-18 on expansion of gammadelta T cells stimulated by zoledronate and IL-2. J Immunother, 2010, 33: 287–296.

    Article  PubMed  CAS  Google Scholar 

  6. Jablonska E, Ratajczak W, Jablonski J. Role of the p38 MAPK pathway in induction of iNOS expression in human leukocytes. Folia Biol (Krakow), 2008, 56: 83–89.

    Article  CAS  Google Scholar 

  7. Zhang Y, Wang C, Zhang Y, et al. C6 glioma cells retrovirally engineered to express IL-18 and Fas exert FasL-dependent cytotoxicity against glioma formation. Biochem Biophys Res Commun, 2004, 325: 1240–1245.

    Article  PubMed  CAS  Google Scholar 

  8. Zheng JN, Pei DS, Mao LJ, et al. Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther, 2010, 17: 28–36.

    Article  PubMed  CAS  Google Scholar 

  9. Nong SJ, Wen DG, Fan CB, et al. Clinical value of serum interleukin-18 in patients with prostate cancer. Chinese-German J Clin Oncol, 2007, 6:574–578.

    Article  CAS  Google Scholar 

  10. Nong SJ, Zhang YP, Zhou SJ, et al. Relationship between serum IL-18 and VEGF levels in patients with prostate cancer. Chinese-German J Clin Oncol, 2010, 9:643–647.

    Article  CAS  Google Scholar 

  11. Nong SJ, Wen DG, Fan CB, et al. Relationship of serum interleukin-18 and interleukin-12 levels with clinicopathology in renal cell carcinoma. Chin J Cancer Res (Chinese), 2007, 19:304–308.

    Article  CAS  Google Scholar 

  12. Li H, Poulos TL. Structure-function studies on nitric oxide synthases. J Inorg Biochem, 2005, 99: 293–305.

    Article  PubMed  CAS  Google Scholar 

  13. Nagy G, Koncz A, Fernandez D, et al. Nitric oxide, mitochondrial hyperpolarization, and T cell activation. Free Radic Biol Med, 2007, 42: 1625–1631.

    Article  PubMed  CAS  Google Scholar 

  14. Aldridge JR Jr, Moseley CE, Boltz DA, et al. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci USA, 2009, 106: 5306–5311.

    Article  PubMed  CAS  Google Scholar 

  15. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev, 2007, 27: 317–352.

    Article  PubMed  CAS  Google Scholar 

  16. Kim KH, Kim SH, Back JH, et al. Cyclooxygenase-2 and inducible nitric oxide synthase expression in thyroid neoplasms and their clinicopathological correlation. J Korean Med Sci, 2006, 21: 1064–1069.

    Article  PubMed  CAS  Google Scholar 

  17. Yamaguchi K, Saito H, Oro S, et al. Expression of inducible nitric oxide synthase is significantly correlated with expression of vascular endothelial growth factor and dendritic cell infiltration in patients with advanced gastric carcinoma. Oncology, 2005, 68: 471–478.

    Article  PubMed  CAS  Google Scholar 

  18. Starzynska T, Markiewski M, Domagala W, et al. The clinical significance of p53 accumulation in gastric carcinoma. Cancer, 1996, 77: 2005–2012.

    Article  PubMed  CAS  Google Scholar 

  19. Patel JB, Shah FD, Shukla SN, et al. Role of nitric oxide and antioxidant enzymes in the pathogenesis of oral cancer. J Cancer Res Ther, 2009, 5: 247–253.

    Article  PubMed  CAS  Google Scholar 

  20. Chikano S, Sawada K, Shimoyama T, et al. IL-18 and IL-12 induce intestinal inflammation and fatty liver in mice in an IFN-gamma dependent manner. Gut, 2000, 47: 779–786.

    Article  PubMed  CAS  Google Scholar 

  21. Loibl S, Strank C, von Minckwitz G, et al. Immunohistochemical evaluation of endothelial nitric oxide synthase expression in primary breast cancer. Breast, 2005, 14: 230–235.

    Article  PubMed  CAS  Google Scholar 

  22. Kamei T, Inui M, Nakase M, et al. Experimental therapy using interferon-gamma and anti-Fas antibody against oral malignant melanoma cells. Melanoma Res, 2005, 15: 393–400.

    Article  PubMed  CAS  Google Scholar 

  23. Lebel-Binay S, Thiounn N, De Pinieux G, et al. IL-18 is produced by prostate cancer cells and secreted in response to interferons. Int J Cancer, 2003, 106: 827–835.

    Article  PubMed  CAS  Google Scholar 

  24. Kang JS, Bae SY, Kim HR, et al. Interleukin-18 increases metastasis and immune escape of stomach cancer via the downregulation of CD70 and maintenance of CD44. Carcinogenesis, 2009, 30: 1987–1996.

    Article  PubMed  CAS  Google Scholar 

  25. Khalili-Azad T, Razmkhah M, Ghiam AF, et al. Association of interleukin-18 gene promoter polymorphisms with breast cancer. Neoplasma, 2009, 56: 22–25.

    Article  PubMed  CAS  Google Scholar 

  26. Samsami Dehaghani A, Shahriary K, Kashef MA, et al. Interleukin-18 gene promoter and serum level in women with ovarian cancer. Mol Biol Rep, 2009, 36: 2393–2397.

    Article  PubMed  CAS  Google Scholar 

  27. Perrella O, Cuomo O, Sbreglia C, et al. IL-18 and interferon-gamma inHCV-related hepatocellular carcinoma: a model of interplay between immune status and cancer. J Biol Regul Homeost Agents, 2009, 23: 251–258.

    PubMed  CAS  Google Scholar 

  28. Jablonska E, Puzewska W, Grabowska Z, et al. VEGF, IL-18 and NO production by neutrophils and their serum levels in patients with oral cavity cancer. Cytokine, 2005, 30: 93–99.

    Article  PubMed  CAS  Google Scholar 

  29. Bastos KR, Barboza R, Sardinha L, et al. Role of endogenous IFNgamma in macrophage programming induced by IL-12 and IL-18. J Interferon Cytokine Res, 2007, 27: 399–410.

    Article  PubMed  CAS  Google Scholar 

  30. Wang B, Xiong Q, Shi Q, et al. Genetic disruption of host interferongamma drastically enhances the metastasis of pancreatic adenocarcinoma through impaired expression of inducible nitric oxide synthase. Oncogene, 2001, 20: 6930–6937.

    Article  PubMed  CAS  Google Scholar 

  31. Mühl H, Pfeilschifter J. Endothelial nitric oxide synthase: a determinant of TNFalpha production by human monocytes/macrophages. Biochem Biophys Res Commun, 2003, 310: 677–680.

    Article  PubMed  Google Scholar 

  32. Fang FC, Vazquez-Torres A. Nitric oxide production by human macrophages: there’s NO doubt about it. Am J Physiol Lung Cell Mol Physiol, 2002, 282: L941–943.

    PubMed  CAS  Google Scholar 

  33. Ramana KV, Reddy AB, Tammali R, et al. Aldose reductase mediates endotoxin-induced production of nitric oxide and cytotoxicity in murine macrophages. Free Radic Biol Med, 2007, 42: 1290–1302.

    Article  PubMed  CAS  Google Scholar 

  34. Wang B, Xiong Q, Shi Q, et al. Genetic disruption of host nitric oxide synthase II gene impairs melanoma-induced angiogenesis and suppresses pleural effusion. Int J Cancer, 2001, 91: 607–611.

    Article  PubMed  CAS  Google Scholar 

  35. Huh J, Liepins A, Zielonka J, et al. Cyclooxygenase 2 rescues LNCaP prostate cancer cells from sanguinarine-induced apoptosis by a mechanism involving inhibition of nitric oxide synthase activity. Cancer Res, 2006, 66: 3726–3736.

    Article  PubMed  CAS  Google Scholar 

  36. Paduch R, Kandefer-Szerszeń M, Szuster-Ciesielska A, et al. Trans-forming growth factor-beta1 modulates metalloproteinase-2 and -9, nitric oxide, RhoA and alpha-smooth muscle actin expression in colon adenocarcinoma cells. Cell Biol Int, 2010, 34: 213–223.

    Article  PubMed  CAS  Google Scholar 

  37. Lu Z, Tao Y, Zhou Z, et al. Mitochondrial reactive oxygen species and nitric oxide-mediated cancer cell apoptosis in 2-butylamino-2-demethoxyhypocrellin B photodynamic treatment. Free Radic Biol Med, 2006, 41: 1590–1605.

    Article  PubMed  CAS  Google Scholar 

  38. Lasagna N, Fantappiè O, Solazzo M, et al. Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance-induced angiogenesis in hepatocellular carcinoma cell lines. Cancer Res, 2006, 66: 2673–2682.

    Article  PubMed  CAS  Google Scholar 

  39. Lancaster JR Jr, Xie K. Tumors face NO problems? Cancer Res, 2006, 66: 6459–6462.

    Article  PubMed  CAS  Google Scholar 

  40. Desai D, Madhunapantula SV, Gowdahalli K, et al. Synthesis and characterization of a novel iNOS/Akt inhibitor Se,Se′-1,4-phenylenebis (1,2-ethanediyl)bisisoselenourea (PBISe) — against colon cancer. Bioorg Med Chem Lett, 2010, 20: 2038–2043.

    Article  PubMed  CAS  Google Scholar 

  41. Vesper BJ, Elseth KM, Tarjan G, et al. Long-term adaptation of breast tumor cell lines to high concentrations of nitric oxide. Tumour Biol, 2010, 31: 267–275.

    Article  PubMed  CAS  Google Scholar 

  42. Reschner A, Harlin H, Laven B, et al. Expression of immunomodulating genes in prostate cancer and benign prostatic tissue. Anal Quant Cytol Histol, 2009, 31: 74–82.

    PubMed  Google Scholar 

  43. Nanni S, Benvenuti V, Grasselli A, et al. Endothelial NOS, estrogen receptor beta, and HIFs cooperate in the activation of a prognostic transcriptional pattern in aggressive human prostate cancer. J Clin Invest, 2009, 119: 1093–1108.

    Article  PubMed  CAS  Google Scholar 

  44. Olson MV, Lee J, Zhang F, et al. Inducible nitric oxide synthase activity is essential for inhibition of prostatic tumor growth by interferonbeta gene therapy. Cancer Gene Ther, 2006, 13: 676–685.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Nong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nong, S., Zhang, Y., He, C. et al. Clinical value of serum interleukin-18 and nitric oxide activities in patients with prostate cancer. Chin. -Ger. J. Clin. Oncol. 10, 711–715 (2011). https://doi.org/10.1007/s10330-011-0899-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10330-011-0899-z

Key words

Navigation