, Volume 59, Issue 4, pp 361–375 | Cite as

Modeling habitat suitability for chimpanzees (Pan troglodytes verus) in the Greater Nimba Landscape, Guinea, West Africa

  • Maegan FitzgeraldEmail author
  • Robert Coulson
  • A. Michelle Lawing
  • Tetsuro Matsuzawa
  • Kathelijne Koops
Original Article


Tropical forests and the biodiversity within them are rapidly declining in the face of increasing human populations. Resource management and conservation of endangered species requires an understanding of how species perceive and respond to their environments. Species distribution modeling (SDM) is an appropriate tool for identifying conservation areas of concern and importance. In this study, SDM was used to identify areas of suitable chimpanzee (Pan troglodytes verus) habitat within the Greater Nimba Landscape, Guinea, West Africa. This location was ideal for investigating the effects of landscape structure on habitat suitability due to the topographic variation of the landscape and the Critically Endangered status of the Western chimpanzee. Additionally, this is the only mountainous, long-term chimpanzee study site and little is known about the effects of topography on chimpanzee behavior. Suitable habitat was predicted based on the location of direct and indirect signs of chimpanzee presence and the spatial distribution of 12 biophysical variables within the study area. Model performance was assessed by examining the area under the curve. The overall predictive performance of the model was 0.721. The variables most influencing habitat suitability were the normalized difference vegetation index (37.8%), elevation (27.3%), hierarchical slope position (11.5%), surface brightness (6.6%), and distance to rivers (5.4%). The final model highlighted the isolation and fragmentation of chimpanzee habitat within the Greater Nimba Landscape. Understanding the factors influencing chimpanzee habitat suitability, specifically the biophysical variables considered in this study, will greatly contribute to conservation efforts by providing quantitative habitat information and improving survey efficiency.


Western chimpanzees Species distribution modeling Mount Nimba Strict Nature Reserve Conservation 



We thank: Direction Nationale de la Recherche Scientifique (DNRST) and Institut de Recherche Environnementale de Bossou (IREB) in Guinea for research authorization; Seringbara guides, K. Doré, F. Doré, F. Zogbila, N. Doré, D. Zogbila, Y. Zogbila, C. Samy, and N. Gbouomy; research assistants, P. Le Sommer, W. Edwards, J. Caraway, D. Montanari, N. James, I. Vélez del Burgo Guinea, D. Hassler, M. McCann, S. Canington, and G. Mamy for help in the field. Research was supported by grants from Gates Cambridge Trust, Lucie Burgers Foundation for Comparative Behaviour Research (the Netherlands), Homerton College and Newnham College (Cambridge) to K.K., and by the Japan Society for the Promotion of Science (JSPS) Leading Graduate Program‐U04‐ PWS, JSPS core-to-core CCSN, and the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT)/JSPS-KAKENHI (#07102010, #12002009, #16002001, #20002001, #24000001, #16H06283) grants to T.M.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10329_2018_657_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)
10329_2018_657_MOESM2_ESM.tif (96.3 mb)
Supplementary material 2 (TIFF 98618 kb)
10329_2018_657_MOESM3_ESM.tiff (218 kb)
Supplementary material 3 (TIFF 218 kb)
10329_2018_657_MOESM4_ESM.tif (96.3 mb)
Supplementary material 4 (TIFF 98618 kb)
10329_2018_657_MOESM5_ESM.tif (96.3 mb)
Supplementary material 5 (TIFF 98618 kb)
10329_2018_657_MOESM6_ESM.tif (96.3 mb)
Supplementary material 6 (TIFF 98618 kb)
10329_2018_657_MOESM7_ESM.tif (11.5 mb)
Supplementary material 7 (TIFF 11816 kb)
10329_2018_657_MOESM8_ESM.tif (15.7 mb)
Supplementary material 8 (TIFF 16102 kb)
10329_2018_657_MOESM9_ESM.tif (11.9 mb)
Supplementary material 9 (TIFF 12200 kb)
10329_2018_657_MOESM10_ESM.tif (8.5 mb)
Supplementary material 10 (TIFF 8726 kb)


  1. Allan JR, Venter O, Maxwell S et al (2017) Recent increases in human pressure and forest loss threaten many Natural World Heritage Sites. Biol Conserv 206:47–55CrossRefGoogle Scholar
  2. Araujo MB, Pearson RG, Thuillers W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Change Biol 11:1504–1513CrossRefGoogle Scholar
  3. Baig MHA, Zhang L, Shuai T, Tong Q (2014) Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens Lett 5:423–431CrossRefGoogle Scholar
  4. Ban SD, Boesch C, Janmaat KRL (2014) Taï chimpanzees anticipate revisiting high-valued fruit trees from further distances. Anim Cogn 17:1353–1364CrossRefPubMedGoogle Scholar
  5. Blaszczynski JS (1997) Landform characterization with geographic information systems. Photogramm Eng Remote Sens 63:183–191Google Scholar
  6. Boesch C, Boesch H (1984) Mental maps in wild chimpanzees: an analysis of hammer transports for nut cracking. Primates 25:160–170CrossRefGoogle Scholar
  7. Bolstad P, Lillesand T (1992) Improved classification of forest vegetation in Northern Wisconsin through a rule-based combination of soils, terrains, and Landsat thematic mapper data. For Sci 38:5–20Google Scholar
  8. Campbell JB, Wynne RH (2011) Introduction to remote sensing, 5th edn. The Guilford Press, New YorkGoogle Scholar
  9. Clee PRS, Abwe EE, Ambahe RD, Anthony NM, Fotso R, Locatelli S et al (2015) Chimpanzee population structure in Cameroon and Nigeria is associated with habitat variation that may be lost under climate change. BMC Evol Biol 15:1–13CrossRefGoogle Scholar
  10. Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–545CrossRefGoogle Scholar
  11. Cohen WB, Spies TA, Fiorella M (1995) Estimating the age and structure of forests in a multi-ownership landscape of western Oregon, U.S.A. Int J Remote Sens 16:721–746CrossRefGoogle Scholar
  12. Crist EP, Cicone RC (1984) A Physically-based transformation of thematic mapper data: the TM Tasseled Cap. IEEE Trans Geosci Remote Sens GE 22:256–263CrossRefGoogle Scholar
  13. De Reu J, Bourgeois J, Bats M, Zwertvaegher A, Gelorini V, De Smedt P et al (2013) Application of the topographic position index to heterogeneous landscapes. Geomorphology 186:39–49CrossRefGoogle Scholar
  14. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:027–046CrossRefGoogle Scholar
  15. Eger AM, Curtis JM, Fortin M-J, Côté IM, Guichard F (2016) Transferability and scalability of species distribution models: a test with sedentary marine invertebrates. Can J Fish Aquat Sci 74:766–778CrossRefGoogle Scholar
  16. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  17. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  18. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  19. Escalante T, Rodríguez-Tapia G, Linaje M, Illoldi-Rangel P, González-López R (2013) Identification of areas of endemism from species distribution models: threshold selection and Nearctic mammals. TIP Revista Especializada en Ciencias Químico-Biológicas 16:5–17CrossRefGoogle Scholar
  20. ESRI (2011) ArcGIS Desktop: Release 10.2.2. Environmental Systems Research Institute, RedlandsGoogle Scholar
  21. Estes LD, Reillo PR, Mwangi AG, Okin GS, Shugart HH (2010) Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sens Environ 114:792–804CrossRefGoogle Scholar
  22. Ferrer-Sánchez Y, Rodríguez-Estrella R (2016) How rare species conservation management can be strengthened with the use of ecological niche modelling: the case for endangered endemic Gundlach’s Hawk and Cuban Black-Hawk. Glob Ecol Conserv 5:88–99CrossRefGoogle Scholar
  23. Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One 9:1–13CrossRefGoogle Scholar
  24. Franklin J (2009) Mapping species distributions: Spatial inference and prediction. Cambridge University Press, United KingdomGoogle Scholar
  25. Gessler PE, Moore ID, McKenzie NJJ, Ryan PJ (1995) Soil-landscape modelling and spatial prediction of soil attributes. Int J Geogr Inf Syst 9:421–432CrossRefGoogle Scholar
  26. Gregory T, Mullett A, Norconk MA (2014) Strategies for navigating large areas: a GIS spatial ecology analysis of the bearded saki monkey, Chiropotes sagulatus, in Suriname. Am J Primatol 76:586–595CrossRefPubMedGoogle Scholar
  27. Guillaumet J, Adjanohoun E (1971) Le milieu naturelle de la Côte-d’Ivoire. Mémoire ORSTOM 50:157–264Google Scholar
  28. Guisan A, Weiss SB, Weiss AD (1999) GLM versus CCA spatial modeling of plant species distribution. Plant Ecol 143:107–122CrossRefGoogle Scholar
  29. Hickey JR, Nackoney J, Nibbelink NP, Blake S, Bonyenge A, Coxe S et al (2013) Human proximity and habitat fragmentation are key drivers of the rangewide bonobo distribution. Biodivers Conserv 22:3085–3104CrossRefGoogle Scholar
  30. Hockings KJ, McLennan MR, Carvalho S, Ancrenaz M, Bobe R, Byrne RW et al (2015) Apes in the Anthropocene: flexibility and survival. Trends Ecol Evol 30:215–222CrossRefPubMedGoogle Scholar
  31. Humle T (2011) Location and Ecology. In: Matsuzawa T, Humle T, Sugiyama Y (eds) The Chimpanzees of Bossou and Nimba. Springer, New York, pp 3–21Google Scholar
  32. Humle T, Matsuzawa T (2001) Behavioural diversity among the wild chimpanzee populations of Bossou and neighbouring areas, Guinea and Cote d’Ivoire, West Africa—a preliminary report. Folia Primatol 72:57–68CrossRefPubMedGoogle Scholar
  33. Humle T, Matsuzawa T (2004) Oil palm use by adjacent communities of chimpanzees at Bossou and Nimba Mountains, West Africa. Int J Primatol 25:551–581CrossRefGoogle Scholar
  34. Humle T, Boesch C, Campbell G, Junker J, Koops K, Kuehl H, Sop T (2016a) Pan troglodytes ssp. verus. The IUCN red list of threatened species: e.T15935A102327574. Accessed 3 May 2017Google Scholar
  35. Humle T, Maisels F, Oates JF, Plumptre A, Williamson EA (2016b) Pan troglodytes. The IUCN red list of threatened species. e.T15933A102326672. Accessed 3 May 2017Google Scholar
  36. Iverson LR, Dale ME, Scott CT, Prasad A (1997) A GIS-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.). Landsc Ecol 12:331–348CrossRefGoogle Scholar
  37. Jantz SM, Pintea L, Nackoney J, Hansen MC (2016) Landsat ETM + and SRTM data provide near real-time monitoring of chimpanzee (Pan troglodytes) habitats in Africa. Remote Sens 8:427CrossRefGoogle Scholar
  38. Junker J, Blake S, Boesch C, Campbell G, Toit L, Duvall C et al (2012) Recent decline in suitable environmental conditions for African great apes. Divers Distrib 18:1077–1091CrossRefGoogle Scholar
  39. Koops K (2011) Elementary technology of foraging and shelter in the chimpanzees (Pan troglodytes verus) of the Nimba Mountains, Guinea. Dissertation, University of CambridgeGoogle Scholar
  40. Koops K, Matsuzawa T (2006) Hand clapping by a chimpanzee in the Nimba mountains, Guinea. West Africa. PAN 13:21Google Scholar
  41. Koops K, Humle T, Sterck EHM, Matsuzawa T (2007) Ground-nesting in the chimpanzees of the Nimba Mountains, Guinea: environmental or social determinants? Am J Primatol 69:407–419CrossRefPubMedGoogle Scholar
  42. Koops K, McGrew WC, de Vries H, Matsuzawa T (2012a) Nest-Building by Chimpanzees (Pan troglodytes verus) at Seringbara, Nimba Mountains: antipredation, thermoregulation, and antivector hypotheses. Int J Primatol 33:356–380CrossRefGoogle Scholar
  43. Koops K, McGrew WC, Matsuzawa T, Knapp L (2012b) Terrestrial nest-building in wild chimpanzees (Pan troglodytes verus): implications for the tree-to-ground sleep transition in early hominins. Am J Phys Anthropol 148:351–361CrossRefPubMedGoogle Scholar
  44. Koops K, McGrew WC, Matsuzawa T (2013) Ecology of culture: do environmental factors influence foraging tool use in wild chimpanzees (Pan troglodytes verus)? Anim Behav 85:175–185CrossRefGoogle Scholar
  45. Koops K, Schöning C, McGrew WC, Matsuzawa T (2015) Chimpanzees prey on army ants at Seringbara, Nimba Mountains, Guinea: predation patterns and tool characteristics. Am J Primatol 77:319–329CrossRefPubMedGoogle Scholar
  46. Kormos R, Boesch C, Bakarr M, Butynski TM (2003) Status survey and conservation action plan: West African chimpanzees. IUCN, Gland, SwitzerlandGoogle Scholar
  47. Kühl HS, Sop T, Williamson EA, Mundry R, Brugière D, Campbell G et al (2017) The critically endangered western chimpanzee declines by 80%. Am J Primatol. CrossRefPubMedGoogle Scholar
  48. Kumar S, Neven LG, Yee WL (2014) Evaluating correlative and mechanistic niche models for assessing the risk of pest establishment. Ecosphere 5:86CrossRefGoogle Scholar
  49. Lamotte M (1998) Le Mont Nimba: réserve de biosphère et site du patrimoine mondial (Guinée et Côte d’Ivoire); initiation à la géomorphologie et à la biogéographie. UNESCO, ParisGoogle Scholar
  50. Laurance WF, Carolina Useche D, Rendeiro J, Kalka M, Bradshaw CJA, Sloan SP et al (2012) Averting biodiversity collapse in tropical forest protected areas. Nature 489:290–294CrossRefPubMedGoogle Scholar
  51. Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393CrossRefGoogle Scholar
  52. Matsuzawa T, Humle T (2011) Bossou: 33 Years. In: Matsuzawa T, Humle T, Sugiyama Y (eds) The Chimpanzees of Bossou and Nimba. Springer, New York, pp 361–370CrossRefGoogle Scholar
  53. Matsuzawa T, Yamakoshi G (1996) Comparison of chimpanzee material culture between Bossou and Nimba, West Africa. In: Russon AE, Bard KA, Parker S (eds) Reaching into thought: the minds of the great apes. Cambridge University Press, Cambridge, pp 211–232Google Scholar
  54. Matsuzawa T, Humle T, Sugiyama Y (2011a) The Chimpanzees of Bossou and Nimba. Springer, New YorkCrossRefGoogle Scholar
  55. Matsuzawa T, Ohashi G, Humle T, Granier N, Kourouma M, Soumah AG (2011b) Green. Corridor Project: Planting Trees in the Savanna Between Bossou and Nimba. In: Matsuzawa T, Humle T, Sugiyama Y (eds) The Chimpanzees of Bossou and Nimba. Springer, New York, pp 361–370CrossRefGoogle Scholar
  56. McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606CrossRefGoogle Scholar
  57. McLennan MR, Hill CM (2012) Troublesome neighbours: changing attitudes towards chimpanzees (Pan troglodytes) in a human-dominated landscape in Uganda. J Nat Conserv 20:219–227CrossRefGoogle Scholar
  58. McNab WH (1989) Terrain shape index: quantifying effect of minor landforms on tree height. For Sci 35:91–104Google Scholar
  59. McNab WH (1993) A topographic index to quantify the effect of mesoscale landform on site productivity. Can J For Res 23:1100–1107CrossRefGoogle Scholar
  60. Morin PA, Moore JJ, Chakraborty R, Jin L, Goodall J, Woodruff DS (1994) Kin selection, social structure, gene flow, and the evolution of chimpanzees. Science 265:1193–1201CrossRefPubMedGoogle Scholar
  61. Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261CrossRefPubMedGoogle Scholar
  62. NASA JPL (2009) ASTER global digital elevation model V002 [data set]. NASA JPL. CrossRefGoogle Scholar
  63. Normand E, Boesch C (2009) Sophisticated Euclidean maps in forest chimpanzees. Anim Behav 77:1195–1201CrossRefGoogle Scholar
  64. Normand E, Ban SD, Boesch C (2009) Forest chimpanzees (Pan troglodytes verus) remember the location of numerous fruit trees. Anim Cogn 12:797–807CrossRefPubMedPubMedCentralGoogle Scholar
  65. Norris D (2014) Model thresholds are more important than presence location type: understanding the distribution of lowland tapir (Tapirus terrestris) in a continuous Atlantic forest of southeast Brazil. Trop Conserv Sci 7:529–547CrossRefGoogle Scholar
  66. Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133:225–245CrossRefGoogle Scholar
  67. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  68. Peterson AT, Papeş M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560CrossRefGoogle Scholar
  69. Phillips SJ, Dudík M (2008) Modeling of species distribution with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175CrossRefGoogle Scholar
  70. Phillips SJ, Avenue P, Park F (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning. ACM, New York, pp 655–662Google Scholar
  71. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259CrossRefGoogle Scholar
  72. Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197CrossRefPubMedGoogle Scholar
  73. Pike RJ, Wilson SE (1971) Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Bull. Geological Society of America 82:1079–1084CrossRefGoogle Scholar
  74. Pintea L, Bauer ME, Bolstad PV, Pusey A (2003) Matching multiscale remote sensing data to interdisciplinary conservation needs: the case of chimpanzees in Western Tanzania. Pecora 15/l. Satell. Inf. IV/ISPRS Comm. I/FIEOS 2002 Conference Proceedings 12.
  75. Plumptre AJ, Rose R, Nangendo G, Williamson EA, Didier K, Hart J et al (2010) Eastern Chimpanzee (Pan troglodytes schweinfurthii): Status Survey and Conservation Action Plan 2010-2020. IUCN, Gland, SwitzerlandGoogle Scholar
  76. Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? J Biogeogr 33:1689–1703CrossRefGoogle Scholar
  77. Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5:23–27Google Scholar
  78. Rödder D, Lawing AM, Flecks M, Ahmadzadeh F, Dambach J et al (2013) Evaluating the significance of paleophylogeographic species distribution models in reconstructing quaternary range-shifts of nearctic chelonians. PLoS ONE 8(10):1–19CrossRefGoogle Scholar
  79. Rushton S, Ormerod S, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200CrossRefGoogle Scholar
  80. Serckx A, Huynen MC, Beudels-Jamar RC, Vimond M, Bogaert J, Kühl HS (2016) Bonobo nest site selection and the importance of predictor scales in primate ecology. Am J Primatol 78:1326–1343CrossRefPubMedGoogle Scholar
  81. Songer M, Delion M, Biggs A, Huang Q (2012) Modeling impacts of climate change on giant panda habitat. Int J Ecol 2012:1–12CrossRefGoogle Scholar
  82. Swets KA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRefPubMedGoogle Scholar
  83. R Core Team (2005) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Accessed 15 Jan 2017
  84. The Green Corridor Project (2017) Accessed 3 May 2017
  85. Torres J, Brito JC, Vasconcelos MJ, Catarino L, Gonçalves J, Honrado J (2010) Ensemble models of habitat suitability relate chimpanzee (Pan troglodytes) conservation to forest and landscape dynamics in Western Africa. Biol Conserv 143:416–425CrossRefGoogle Scholar
  86. Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342CrossRefPubMedGoogle Scholar
  87. Wich SA, Gaveau D, Abram N, Ancrenaz M, Baccini A, Brend S et al (2012) Understanding the impacts of land-use policies on a threatened species: is there a future for the Bornean Orang-utan? PLoS One 7:e49142CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wilson JW, Sexton JO, Todd Jobe R, Haddad NM (2013) The relative contribution of terrain, land cover, and vegetation structure indices to species distribution models. Biol Conserv 164:170–176CrossRefGoogle Scholar
  89. World Heritage Committee (2017) Mount Nimba Strict Nature Reserve. Accessed 1 Sep 2017
  90. Zurell D, Elith J, Schröder B (2012) Predicting to new environments: tools for visualizing model behaviour and impacts on mapped distributions. Divers Distrib 18:628–634CrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Ecosystem Science and ManagementTexas A&M UniversityCollege StationUSA
  2. 2.Knowledge Engineering Laboratory, Department of EntomologyTexas A&M UniversityCollege StationUSA
  3. 3.Primate Research InstituteKyoto UniversityInuyamaJapan
  4. 4.Anthropological Institute and MuseumUniversity of ZurichZurichSwitzerland

Personalised recommendations