Primates

, Volume 58, Issue 2, pp 315–321 | Cite as

Relocation stress induces short-term fecal cortisol increase in Tonkean macaques (Macaca tonkeana)

  • Carlo Cinque
  • Arianna De Marco
  • Jerome Mairesse
  • Chiara Giuli
  • Andrea Sanna
  • Lorenzo De Marco
  • Anna Rita Zuena
  • Paola Casolini
  • Assia Catalani
  • Bernard Thierry
  • Roberto Cozzolino
Original Article

Abstract

The level of glucocorticoids, especially if obtained from noninvasive sampling, can be used as an index of animal well-being, allowing evaluation of the animal’s response to environmental modifications. Despite evidence that these hormones play a relevant role in energy metabolism regulation in perceived or real stress events, little is known regarding the factors that could modify the capability of animals to cope with relocation events. The aim of this research was to assess fecal cortisol metabolite concentrations before, during and after acute stress (transfer and relocation event) in two well-established social groups of Tonkean macaques (Macaca tonkeana). The results showed that the fecal levels of cortisol increased in individuals of both groups in response to the stress event, with a similar trend in males and females. Hormone levels were back to baseline values in both groups a few days after transfer and relocation. The presence of known social partners could be one of the factors that possibly facilitated the adaptation process.

Keywords

Glucocorticoid Primates Noninvasive Social group Enzyme immunoassay 

References

  1. Bahr NI, Palme R, Möhle U, Hodges JK, Heistermann M (2000) Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. Gen Comp Endocrinol 117:427–438CrossRefPubMedGoogle Scholar
  2. Bardi M, Shimizu K, Barrett GM, Borgognini-Tarli SM, Huffman MA (2003) Peripartum cortisol levels and mother-infant interactions in Japanese macaques. Am J Phys Anthropol 120:298–304CrossRefPubMedGoogle Scholar
  3. Brown JL, Bellem AC, Fouraker M, Wildt DE, Roth TL (2001) Comparative analysis of gonadal and adrenal activity in the black and white rhinoceros in North America by noninvasive endocrine monitoring. Zoo Biol 20:463–486CrossRefGoogle Scholar
  4. Carr BR, Parker CR Jr, Madden JD, MacDonald PC, Porter JC (1981) Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am J Obstet Gynecol 139:416–422CrossRefPubMedGoogle Scholar
  5. Cavigelli SA, Monfort SL, Whitney TK, Mechref YS, Novotny M, McClintock MK (2005) Frequent serial fecal corticoid measures from rats reflect circadian and ovarian corticosterone rhythms. J Endocrinol 184:153–163CrossRefPubMedGoogle Scholar
  6. Chelini MO, Otta E, Yamakita C, Palme R (2010) Sex differences in the excretion of fecal glucocorticoid metabolites in the Syrian hamster. J Comp Physiol B 180:919–925CrossRefPubMedGoogle Scholar
  7. Creel S, Christianson D, Schuette P (2013) Glucocorticoid stress responses of lions in relationship to group composition, human land use, and proximity to people. Conserv Physiol 1:cot021. doi:10.1093/conphys/cot021 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Davenport MD, Tiefenbacher S, Lutz CK, Novak MA, Meyer JS (2006) Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol 147:255–261CrossRefPubMedGoogle Scholar
  9. Davenport MD, Lutz CK, Tiefenbacher S, Novak MA, Meyer JS (2008) A rhesus monkey model of self-injury: effects of relocation stress on behavior and neuroendocrine function. Biol Psychiatry 63:990–996CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dufour V, Sueur C, Whiten A, Buchanan-Smith HM (2011) The impact of moving to a novel environment on social networks, activity and wellbeing in two New World primates. Am J Primatol 73:802–811CrossRefPubMedGoogle Scholar
  11. Ezenwa VO, Ekernas LS, Creel S (2012) Unravelling complex associations between testosterone and parasite infection in the wild. Funct Ecol 26:123–133CrossRefGoogle Scholar
  12. Fernström AL, Sutian W, Royo F, Westlund K, Nilsson T, Carlsson HE, Paramastri Y, Pamungkas J, Sajuthi D, Schapiro SJ, Hau J (2008) Stress in cynomolgus monkeys (Macaca fascicularis) subjected to long-distance transport and simulated transport housing conditions. Stress 11:467–476CrossRefPubMedGoogle Scholar
  13. Goymann W (2012) On the use of non-invasive hormone research in uncontrolled, natural environments: the problem with sex, diet, metabolic rate and the individual. Methods Ecol Evol 3:757–765CrossRefGoogle Scholar
  14. Heinsbroek RP, VanHaaren F, Feenstra MG, Endert E, Van de Poll NE (1991) Sex- and time-dependent changes in neurochemical and hormonal variables induced by predictable and unpredictable footshock. Physiol Behav 49:1251–1256CrossRefPubMedGoogle Scholar
  15. Honess PE, Johnson PJ, Wolfensohn SE (2004) A study of behavioural responses of non-human primates to air transport and re-housing. Lab Anim 38:119–132CrossRefPubMedGoogle Scholar
  16. Landi MS, Kreider JW, Lang CM, Bullock LP (1982) Effects of shipping on the immune function in mice. Am J Vet Res 43:1654–1657PubMedGoogle Scholar
  17. Maestripieri D, Hoffman CL, Fulks R, Gerald MS (2008) Plasma cortisol responses to stress in lactating and nonlactating female rhesus macaques. Horm Behav 53:170–176CrossRefPubMedGoogle Scholar
  18. McGlone JJ, Salak JL, Lumpkin EA, Nicholson RI, Gibson M, Norman RL (1993) Shipping stress and social status effects on pig performance, plasma cortisol, natural killer cell activity, and leukocyte numbers. J Anim Sci 71:888–896PubMedGoogle Scholar
  19. Möhle U, Heistermann M, Palme R, Hodges JK (2002) Characterization of urinary and fecal metabolites of testosterone and their measurement for assessing gonadal endocrine function in male nonhuman primates. Gen Comp Endocrinol 129:135–145CrossRefPubMedGoogle Scholar
  20. Norcross JL, Newman JD (1999) Effects of separation and novelty on distress vocalizations and cortisol in the common marmoset (Callithrix jacchus). Am J Primatol 47:209–222CrossRefPubMedGoogle Scholar
  21. O’Connor KA, Brindle E, Shofer J, Trumble BC, Aranda JD, Rice K, Tatar M (2011) The effects of a long-term psychosocial stress on reproductive indicators in the baboon. Am J Phys Anthropol 145:629–638CrossRefPubMedPubMedCentralGoogle Scholar
  22. Palme R, Fischer P, Schildorfer H, Ismail MN (1996) Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Anim Reprod Sci 43:43–63CrossRefGoogle Scholar
  23. Raminelli JLF, Corderio de Sousa MB, Cunha MS, Barbosa FV (2001) Morning and afternoon patterns of fecal cortisol excretion among reproductive and non-reproductive male and female common marmosets, Callithrix jacchus. Biol Rhythm Res 32:159–167Google Scholar
  24. Reimers M, Schwarzenberger F, Preuschoft S (2007) Rehabilitation of research chimpanzees: stress and coping after long-term isolation. Horm Beh 51:428–435CrossRefGoogle Scholar
  25. Running A (2015) Decreased cortisol and pain in breast cancer: biofield therapy potential. Evid Based Complement Altern Med. doi:10.1155/2015/870640 (article ID 870640) Google Scholar
  26. Schaffner CM, Smith TE (2005) Familiarity may buffer the adverse effects of relocation on marmosets (Callithrix kuhlii): Preliminary evidence. Zoo Biol 24:93–100CrossRefGoogle Scholar
  27. Schapiro SJ, Lambeth SP, Rosenmaj JK, Williams LE, Nehete BN, Nehete PN (2012) Physiological and welfare consequences of transport, relocation, and acclimatization of chimpanzees (Pan troglodytes). Appl Anim Behav Sci 137:183–193CrossRefPubMedGoogle Scholar
  28. Schatz S, Palme R (2001) Measurement of faecal cortisol metabolites in cats and dogs: a noninvasive method for evaluating adrenocortical function. Vet Res Commun 25:271–287CrossRefPubMedGoogle Scholar
  29. Shamim W, Yousufuddin M, Bakhai A, Coats AJS, Honour JW (2000) Gender differences in the urinary excretion rates of cortisol and androgen metabolites. Ann Clin Biochem 37:770–774CrossRefPubMedGoogle Scholar
  30. Stavisky RC, Watson SL, Anthony MS, Manuck SB, Adams MR, Kaplan JR (2003) Influence of estradiol on cortisol secretion in ovariectomized cynomolgus macaques (Macaca fascicularis). Am J Primatol 60:17–22CrossRefPubMedGoogle Scholar
  31. Suomi SJ, Eisele CD, Grady SA, Harlow HF (1975) Depressive behavior in adult monkeys following separation from family environment. J Abnorm Psychol 84:576–578CrossRefPubMedGoogle Scholar
  32. Thierry B (2007) Unity in diversity: lessons from macaque societies. Evolut Anthropol 16:224–238CrossRefGoogle Scholar
  33. Thierry B (2010) The macaques: a double-layered social organization. In: Campbell CJ, Fuentes A, MacKinnon KC, Bearder SK, Stumpf RM (eds) Primates in perspective. Oxford University Press, Oxford, pp 229–241Google Scholar
  34. Thierry B, Heistermann M, Aujard F, Hodges JK (1996) Long-term data on basic reproductive parameters and evaluation of endocrine, morphological, and behavioral measures for monitoring reproductive status in a group of semifree-ranging Tonkean macaques (Macaca tonkeana). Am J Primatol 39:47–62CrossRefGoogle Scholar
  35. Touma C, Möstl E, Sachser N, Palme R (2003) Effect of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen Comp Endocrinol 130:267–278CrossRefPubMedGoogle Scholar
  36. van Ruiven R, Meijer GW, Wiersma A, Baumans V, van Zutphen LFM, Ritskes-Hoitinga J (1998) The influence of transportation stress on selected nutritional parameters to establish the necessary minimum period for adaptation in rat feeding studies. Lab Anim 32:446–456CrossRefPubMedGoogle Scholar
  37. Watson SL, McCoy JG, Stavisky RC, Greer TF, Hanbury D (2005) Cortisol response to relocation stress in Garnett’s bushbaby (Otolemur garnettii). Contemp Top Lab Anim Sci 44:22–24PubMedGoogle Scholar
  38. Wolfensohn SE (1997) Brief review of scientific studies of the welfare implications of transporting primates. Lab Anim 31:303–305CrossRefPubMedGoogle Scholar
  39. Yamanashi Y, Teramoto M, Morimura N, Hirata S, Inoue-Murayama M, Idani G (2016) Effects of relocation and individual and environmental factors on the long-term stress levels in captive chimpanzees (Pan troglodytes): monitoring hair cortisol and behaviors. PLoS One 11:e0160029. doi:10.1371/journal.pone.0160029 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ziegler TE, Scheffler G, Snowdon CT (1995) The relationship of cortisol levels to social environment and reproductive functioning in female cotton-top tamarins, Saguinus oedipus. Horm Behav 29:407–424CrossRefPubMedGoogle Scholar

Copyright information

© Japan Monkey Centre and Springer Japan 2016

Authors and Affiliations

  • Carlo Cinque
    • 1
    • 2
  • Arianna De Marco
    • 1
    • 3
  • Jerome Mairesse
    • 2
    • 4
  • Chiara Giuli
    • 2
  • Andrea Sanna
    • 1
  • Lorenzo De Marco
    • 1
    • 3
  • Anna Rita Zuena
    • 2
  • Paola Casolini
    • 2
  • Assia Catalani
    • 2
  • Bernard Thierry
    • 5
    • 6
  • Roberto Cozzolino
    • 1
  1. 1.Fondazione Ethoikos, Convento dell’OsservanzaRadicondoliItaly
  2. 2.Department of Physiology and PharmacologySapienza University of RomeRomeItaly
  3. 3.Giardino Faunistico di Piano dell’AbatinoPoggio San LorenzoItaly
  4. 4.Neonatal Intensive Care Unit, INSERM U1141, Robert-Debré Children University HospitalDenis Diderot Paris University, APHPParisFrance
  5. 5.Département Ecologie, Physiologie et EthologieCentre National de la Recherche ScientifiqueStrasbourgFrance
  6. 6.Institut Pluridisciplinaire Hubert CurienUniversité de StrasbourgStrasbourgFrance

Personalised recommendations