Advertisement

Primates

, Volume 56, Issue 2, pp 145–161 | Cite as

Molecular phylogenetics and phylogeography of all the Saimiri taxa (Cebidae, Primates) inferred from mt COI and COII gene sequences

  • Manuel Ruiz-GarcíaEmail author
  • Kelly Luengas-Villamil
  • Norberto Leguizamon
  • Benoit de Thoisy
  • Hugo Gálvez
Original Article

Abstract

Some previous genetic studies have been performed to resolve the molecular phylogenetics of the squirrel monkeys (Saimiri). However, these studies did not show consensus in how many taxa are within this genus and what the relationships among them are. For this reason, we sequenced 2,237 base pairs of the mt COI and COII genes in 218 Saimiri individuals. All, less 12 S. sciureus sciureus from French Guyana, were sampled in the wild. These samples represented all the living Saimiri taxa recognized. There were four main findings of this study. (1) Our analysis detected 17 different Saimiri groups: albigena, cassiquiarensis, five polyphyletic macrodon groups, three polyphyletic ustus groups, sciureus, collinsi, boliviensis, peruviensis, vanzolinii, oerstedii and citrinellus. Four different phylogenetic trees showed the Central American squirrel monkey (S. oerstedii) as the most differentiated taxon. In contrast, albigena was indicated to be the most recent taxon. (2) There was extensive hybridization and/or historical introgression among albigena, different macrodon groups, peruviensis, sciureus and collinsi. (3) Different tests showed that our maximum likelihood tree was consistent with two species of Saimiri: S. oerstedii and S. sciureus. If no cases of hybridization were detected implicating S. vanzolinii, this could be a third recognized species. (4) We also estimated that the first temporal splits within this genus occurred around 1.4–1.6 million years ago, which indicates that the temporal split events within Saimiri were correlated with Pleistocene climatic changes. If the biological species concept is applied because, in this case, it is operative due to observed hybridization in the wild, the number of species within this genus is probably more limited than recently proposed by other authors. The Pleistocene was the fundamental epoch when the mitochondrial Saimiri diversification process occurred.

Keywords

Saimiri Phylogenetics and phylogeography Mitochondrial COI and COII genes Biological species concept Pleistocene climatic changes 

Notes

Acknowledgments

Thanks go to Dr. Diana Alvarez, Pablo Escobar-Armel, Luisa Fernanda Castellanos-Mora and Nicolás Lichilín for their respective help in obtaining Saimiri samples during the last 14 years. The sampling procedures employed in this work complied with all the protocols approved by the Ethical Committee of the Pontificia Universidad Javeriana (No. 45684) and the laws of the Ministerio de Ambiente, Vivienda y Desarrollo Territorial (R 1256) from Colombia. This research adhered to the stipulations set by the American Society of Primatologists. Many thanks go to the Peruvian Ministry of Environment, to the PRODUCE (Oficio No 5225), from Peru, the Consejo Nacional del Ambiente and the Instituto Nacional de Recursos Naturales (INRENA, Peru), to the Colección Boliviana de Fauna (Dr. Julieta Vargas; La Paz, Bolivia), to CITES Bolivia (permissions 01482, 01483, 01737, 01738, 01739, 01740, 01741) and to the Ministerio del Ambiente (permission HJK-9788) in Coca (Ecuador) for their role in facilitating the obtainment of the collection permits in Peru, Bolivia and Ecuador. Also many thanks to the Brazilian institutions for collaborating with this study (IBAMA protocol number 77933). All animal sampling in French Guiana was carried out in accordance with French animal care regulations and laws. The first author also thanks the Ticuna, Yucuna, Yaguas, Witoto and Cocama Indian communities at the Colombian Amazon, the Bora, Ocaina, Shipibo-Comibo, Capanahua, Angoteros, Orejón, Yaguas, Cocama, Kishuarana and Alama in the Peruvian Amazon, the Sirionó, and Chacobo in the Bolivian Amazon and the Marubos, Kulina, Maku and Waimiri-Atroari communities in the Brazilian Amazon. Dr. Joseph Shostell helped with the English syntax.

Supplementary material

10329_2014_452_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (DOC 67 kb)
10329_2014_452_MOESM2_ESM.pdf (2.3 mb)
Supplementary material 2 (PDF 2342 kb)
10329_2014_452_MOESM3_ESM.pdf (2 mb)
Supplementary material 3 (PDF 2039 kb)

References

  1. Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder archonta. Proc Natl Acad Sci USA 88:10317–10321CrossRefPubMedCentralPubMedGoogle Scholar
  2. Agrizzi J, Loss AC, Farro APC, Duda R, Costa LP, Leite YLR (2012) Molecular diagnosis of Atlantic forest mammals using mitochondrial DNA sequences: didelphid marsupials. Open Zool J 5:2–9CrossRefGoogle Scholar
  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  4. Ascunce MS, Hasson E, Mudry MD (2003) COII: a useful tool for inferring phylogenetic relationships among new world monkeys (Primates, Platyrrhini). Zool Scripta 32:397–406CrossRefGoogle Scholar
  5. Ashley MV, Vaughn TA (1995) Owl monkeys (Aotus) are highly divergent in mitochondrial cytochrome c oxidase (COII) sequences. Int J Primatol 5:793–807CrossRefGoogle Scholar
  6. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeographic: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522Google Scholar
  7. Ayres JM (1985) On a new species of squirrel monkey, genus Saimiri, from Brazilian Amazonia (Primates, Cebidae). Pap Avul Zool 36:147–164Google Scholar
  8. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  9. Boinski S, Cropp SJ (1999) Disparate data sets resolve squirrel monkey (Saimiri) taxonomy: implications for behavioral ecology and biomedical usage. Int J Primatol 20:237–256CrossRefGoogle Scholar
  10. Boinski S, Newman JD (1988) Preliminary observations on squirrel monkey (Saimiri oerstedi) vocalizations in Costa Rica. Amer J Primatol 14:329–343CrossRefGoogle Scholar
  11. Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973CrossRefGoogle Scholar
  12. Burrell AS, Jolly CJ, Tosi AJ, Disotell TR (2009) Mitochondrial evidence for the hybrid origin of the kipunji, Rungwecebus kipunji (Primates: Papionini). Mol Phylog Evol 51:340–348CrossRefGoogle Scholar
  13. Cabrera A (1957) Catalogo de los mamiferos de America del Sur. Rev Mus Argent Cienc Nat Bernardino Rivadavia Cienc Zool 4:1–307Google Scholar
  14. Cabrera A, Yepes J (1940) Historia Natural. vol I and II, Buenos Aires, EdiarGoogle Scholar
  15. Chiou KL, Pozzi L, Lynch Alfaro JW, Di Fiore A (2011) Pleistocene diversification of living squirrel monkeys (Saimiri spp) inferred from complete mitochondrial genome sequences. Mol Phylog Evol 59:736–745CrossRefGoogle Scholar
  16. Coimbra-Filho AF, Mittermeier RA (1981) Ecology and behavior of Neotropical Primates. Academia Brasileira de Ciências, Rio de JaneiroGoogle Scholar
  17. Collins AC, Dubach JM (2000) Phylogenetic relationships of spider monkeys (Ateles) based on mitochondrial DNA variation. Int J Primat 21:381–420CrossRefGoogle Scholar
  18. Cooper RW (1968) Squirrel monkey taxonomy and supply. In: Rosenblum LA, Cooper RW (eds) The squirrel monkey. Academic Press, New York, pp 1–29CrossRefGoogle Scholar
  19. Cortes-Ortiz L, Bermingham E, Rico C, Rodriguez-Luna E, Sampaio I, Ruiz-Garcia M (2003) Molecular systematics and biogeography of the Neotropical monkey genus. Alouatta Mol Phylogenet Evol 26:64–81CrossRefGoogle Scholar
  20. Cossíos ED, Lucherini M, Ruiz-García M, Angers B (2009) Influence of ancient glacial periods on the Andean fauna: the case of the Pampas cat (Leopardus colocolo). BMC Evol Biol 9:68–79CrossRefPubMedCentralPubMedGoogle Scholar
  21. Costello RK, Dickinson C, Rosenberger AL, Boinski S, Szalay FS (1993) Squirrel monkey (genus Saimiri) taxonomy. A multidisciplinary study of the biology of species. In: Kimbel WH, Martin LB (eds) Species, species concepts, and Primate evolution. Plenum Press, New York, pp 177–210CrossRefGoogle Scholar
  22. Cropp S, Boinski S (2000) The Central American squirrel monkey (Saimiri oerstedii): introduced hybrid or endemic species. Mol Phylogenet Evol 16:350–365CrossRefPubMedGoogle Scholar
  23. da Cruz Lima E (1945) Mammals of Amazonia. Vol. 1. General introduction and primates. Museu Paraense Emilio Goeldi de Historia Natural e Etnografia, Rio de JaneiroGoogle Scholar
  24. Dobzhansky TH (1971) Evolutionary oscillations in Drosophila pseudoobscura. In: Ford E (ed) Ecological genetics and evolution. Oxford Blackwell Scientific, Oxford, pp 109–133CrossRefGoogle Scholar
  25. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedCentralPubMedGoogle Scholar
  26. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88CrossRefPubMedCentralPubMedGoogle Scholar
  27. Dutrillaux B (1988) New interpretation of the presumed common ancestral karyotype of platyrrhine monkeys. Fol Primat 50:226–229CrossRefGoogle Scholar
  28. Dutrillaux B, Couturier J (1981) The ancestral karyotype of platyrrhine monkeys. Cytogenet Genet 30:232–242CrossRefGoogle Scholar
  29. Elliot DG (1913) A review of Primates. Monograph Series. American Museum of Natural History, New YorkGoogle Scholar
  30. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  31. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  32. Ferrari SF (1993) The adaptive radiation of Amazonian callitrichids (Primates, Platyrrhini). Evol Biol 7:81–103Google Scholar
  33. Ferrari SF (2004) Biogeography of Amazonian Primates. A Primatologia no Brasil 8:101–122Google Scholar
  34. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299Google Scholar
  35. Freeman S, Herron JC (1998) Evolutionary analysis. Prentice Hall, Upper Saddle River, pp 1–786Google Scholar
  36. Goldman N, Anderson P, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Syst Biol 49:652–670CrossRefPubMedGoogle Scholar
  37. Groves CP (2001) Primate taxonomy. Smithsonian Institution Press, WashingtonGoogle Scholar
  38. Haffer J (1969) Speciation in Amazonian forest birds. Amer Assoc Advanc Science 165:131–137Google Scholar
  39. Haffer J (1982) General aspects of the refuge theory. In: Prance GT (ed) Biological diversification in the Tropics. Columbia University Press, New York, pp 6–24Google Scholar
  40. Hebert PDN, Cywinska A, Ball SL, de Waard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321CrossRefGoogle Scholar
  41. Hershkovitz P (1972) The recent mammals of the Neotropical region: a zoogeographic and ecological region: a zoogeographic and ecological review. In: Keast A, Erk FC, Glass B (eds) Evolution, mammals and southern continents. State University of New York Press, Albany, pp 311–431Google Scholar
  42. Hershkovitz P (1984) Taxonomy of squirrel monkeys genus Saimiri (Cebidae, Platyrrhini): a preliminary report with description of Hitherto Unnamed Form. Am J Primatol 7:155–210CrossRefGoogle Scholar
  43. Hershkovitz P (1987) The taxonomy of South American Sakis, genus Pithecia (Cebidae, Platyrrhini): a preliminary report and critical review with the description of a new species and a new subspecies. Amer J Primat 12:387–468CrossRefGoogle Scholar
  44. Hill WCO (1960) Primates: comparative anatomy and taxonomy. IV Cebidae, Part A. Edinburgh University Press, EdinburghGoogle Scholar
  45. Huelsenbeck JP, Bull JJ (1996) A likelihood ratio test to detect conflicting phylogenetic signal. Syst Biol 45:92–98CrossRefGoogle Scholar
  46. Jones TC, Thorington RW Jr, Hu MM, Adams E, Cooper RW (1973) Karyotypes of squirrel monkeys (Saimiri sciureus) from different geographic regions. Amer J Phys Anthrop 38:269–278CrossRefPubMedGoogle Scholar
  47. Kartavtsev Y (2011) Divergence at Cyt-b and Co-1 mtDNA genes on different taxonomic levels and genetics of speciation in animals. Mitochondrial DNA 22:55–65CrossRefPubMedGoogle Scholar
  48. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  49. Lavergne A, Ruiz-García M, Lacaste V, Catzeflis F, Lacote S, De Thoisy B (2010) Taxonomy and phylogeny of squirrel monkey (genus Saimiri) using cytochrome b genetic analysis. Amer J Primatol 72:242–253CrossRefGoogle Scholar
  50. Li WH (1997) Molecular evolution. Sinauer, SunderlandGoogle Scholar
  51. Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  52. Lim BK (2012) Preliminary assessment of Neotropical mammal DNA barcodes: an underestimation of biodiversity. Open Zool J 5:10–17CrossRefGoogle Scholar
  53. Lönnberg E (1940) Notes on some members of the genus Saimiri. Ark Zool 32:1–18Google Scholar
  54. Ma NSF, Jones TC, Thorington RW, Cooper RW (1974) Chromosome banding patterns in squirrel monkeys (Saimiri sciureus). J Med Primatol 3:120–137Google Scholar
  55. Matzen da Silva J, Creer S, dos Santos A, Costa AC, Cunha MR, Costa FO, Carvalho GR (2011) Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 6:e19449CrossRefPubMedCentralPubMedGoogle Scholar
  56. Mau B (1996) Bayesian phylogenetic inference via markov chain monte carlo methods. University of Wisconsin, MadisonGoogle Scholar
  57. Mau B, Newton M, Larget B (1999) Bayesian phylogenetic inference via markov chain montecarlo methods. Biometrics 55:1–12CrossRefPubMedGoogle Scholar
  58. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  59. Moore CM, Harris CP, Abee CR (1990) Distribution of chromosomal polymorphisms in three subspecies of squirrel monkeys (genus Saimiri). Cytogen Cell Gen 53:118–122CrossRefGoogle Scholar
  60. Morral N, Bertrantpetit J, Estivill X (1994) The origin of the major cystic fibrosis mutation (delta F508) in European populations. Nat Genet 7:169–175CrossRefPubMedGoogle Scholar
  61. Napier PH (1976) Catalogue of Primates in the British Museum (Natural History), Part 1: Families Callitrichidae and Cebidae. British Museum (Natural History), LondonGoogle Scholar
  62. Napier JR, Napier PH (1967) A handbook of living Primates. Academic Press, New YorkGoogle Scholar
  63. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  64. Olson MA, Zajac RN, Russello MA (2009) Estuarine-scale genetic variation in the polychaete Hobsonia florida (Ampharetidae; Annelida) in long island sound and relationships to Pleistocene glaciations. Biol Bull 217:86–94PubMedGoogle Scholar
  65. Osgood WH (1916) Mammals of the Collins-Day South America expedition. Field Museum of Natural History. Zool Ser 10(14):199–216Google Scholar
  66. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinform 14:817–818CrossRefGoogle Scholar
  67. Rambaut A, Grassly NC (1997) Seq-gen: an application for the monte carlo simulation of DNA sequence evolution along phylogenetic trees. Comp Appl Biosci 13:235–238PubMedGoogle Scholar
  68. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311CrossRefPubMedGoogle Scholar
  69. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  70. Robinson JG, Janson CH (1987) Capuchins, squirrel monkeys, and atelines: socioecological convergence with old world primates. In: Smuts BB (ed) Primate Societies. University of Chicago Press, Chicago, pp 44–53Google Scholar
  71. Ruiz-García M, Pinedo-Castro M (2010) Molecular systematics and phylogeography of the genus Lagothrix (Atelidae, Primates) by means of mitochondrial COII gene. Folia Primatol 81:109–128CrossRefPubMedGoogle Scholar
  72. Ruiz-García M, Castillo MI, Vásquez C, Rodríguez K, Pinedo M, Shostell J, Leguizamon N (2010) Molecular Phylogenetics and Phylogeography of the White-fronted capuchin (Cebus albifrons; Cebidae, Primates) by means of mtCOII gene sequences. Mol Phylogenet Evol 57:1049–1061CrossRefPubMedGoogle Scholar
  73. Ruiz-García M, Vásquez C, Camargo E, Leguizamon N, Castellanos-Mora LF, Vallejo A, Gálvez H, Shostell J, Alvarez D (2011) The molecular phylogeny of the Aotus genus (Cebidae, Primates). Int J Primatol 32:1218–1241CrossRefGoogle Scholar
  74. Ruiz-García M, Castillo MI, Lichilin N, Pinedo-Castro M (2012a) Molecular relationships and classification of several tufted capuchin lineages (Cebus apella, C. xanthosternos and C. nigritus, Cebidae), by means of mitochondrial COII gene sequences. Fol Primatol 83:100–125CrossRefGoogle Scholar
  75. Ruiz-García M, Castillo MI, Ledezma A, Leguizamon N, Sánchez R, Chinchilla M, Gutierrez-Espeleta G (2012b) Molecular systematics and phylogeography of Cebus capucinus (Cebidae, Primates) in Colombia and Costa Rica by means of mitochondrial COII gene. Am J Primatol 74:366–380CrossRefPubMedGoogle Scholar
  76. Ruiz-García M, Pinedo-Castro M (2013) Population genetics and phylogeographic analyses of the jaguarundi (Puma yagouaroundi) by means of three mitochondrial markers: the first molecular population study of this species. In: Ruiz-Garcia M, Shostell JM (eds) Molecular population genetics, phylogenetics, evolutionary biology and conservation of the Neotropical carnivores. Nova Science Publishers, Hauppauge, pp 245–288Google Scholar
  77. Ruiz-García M, Rivas-Sánchez D, Lichilín-Ortiz N (2013) Phylogenetics relationships among four putative taxa of foxes of the Pseudoalopex genus (Canidae, Carnivora) and molecular population genetics of Ps. culpaeus and Ps. sechurae. In: Ruiz-García M, Shostell J (eds) Molecular Population Genetics, Phylogenetics, Evolutionary Biology and Conservation of the Neotropical Carnivores. Nova Science Publishers, New York, pp 97–128Google Scholar
  78. Ruiz-García M, Pinedo-Castro M, Shostell JM (2014) How many genera and species of wolly monkeys (Atelidae, Platyrrhine, Primates) are there? The first molecular analysis of Lagothrix flavicauda, an endemic Peruvian primate species. Mol Phylogenet Evol 79:179–198CrossRefPubMedGoogle Scholar
  79. Ruvolo M, Disotell TR, Allard MW, Brown WM, Honeycutt RL (1991) Resolution of the 1203 African hominoid trichotomy by use of a mitochondrial gene sequence. Proc Natl Acad Sci USA 88:1571–1574CrossRefGoogle Scholar
  80. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:405–425Google Scholar
  81. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  82. Shimodaira H, Hasegawa H (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116CrossRefGoogle Scholar
  83. Silva BTF, Sampaio MIC, Schneider H, Schneider MPC, Montoya E, Encarnación F, Callegari-Jacques SM, Salzano FM (1992) Natural hybridization between Saimiri taxa in the Peruvian Amazonia. Primates 33:107–113CrossRefGoogle Scholar
  84. Silva BTF, Sampaio MIC, Schneider H, Schneider MPC, Montoya E, Encarnacion F, Callegari-Jacques SM, Salzano FM (1993) Protein electrophoretic variability in Saimiri and the question of its species status. Amer J Phys Anthrop 29:183–193Google Scholar
  85. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony and other methods. http://paup.csit.fsu.edu. pp. 1-142
  86. Swofford DL, Olsen GL, Wadell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM (ed) Molecular systematics. Sinauer Associates, Sunderland, pp 407–514Google Scholar
  87. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedCentralPubMedGoogle Scholar
  88. Thoisy B, Goncalves da Silva A, Ruiz-García M, Tapia A, Ramirez O, Arana M, Quse V, Paz-y-Miño C, Tobler M, Pedraza C, Lavergne A (2010) Population history, phylogeography, and conservation genetics of the last Neotropical mega-herbivore, the Lowland tapir (Tapirus terrestris). BMC Evol Biol 10:278–295CrossRefPubMedCentralPubMedGoogle Scholar
  89. Thorington RW (1976) The systematics of New World monkeys. First InterAmerican conference on conservation and utilization of American nonhuman Primates in biomedical research, pp. 8–18Google Scholar
  90. Thorington RW (1985) The taxonomy and distribution of squirrel monkeys (Saimiri). In: Rosenblum RA, Coe CL (eds) The handbook of squirrel monkey research. Plenum Press, New York, pp 1–33CrossRefGoogle Scholar
  91. Van der Hammen T (1992) Historia, Ecología y Vegetación. Corporación Colombiana para la Amazonía, AraracuaraGoogle Scholar
  92. Van der Hammen T, Duivenvoorden JF, Lips JM, Urrego LE, Espejo N (1991) El cuaternario tardío del área del Medio Caquetá (Amazonia colombiana). Col Amaz 5:63–90Google Scholar
  93. Von Pusch A (1942) Die arten der gattung Cebus. Z Saugeterklul 16:187–237Google Scholar
  94. Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  95. Weir BS, Hill WG (2002) Estimating F-statistics. Annu Rev Genet 36:721–750CrossRefPubMedGoogle Scholar
  96. Yonenaga-Yassuda Y, Chu TR (1985) Chromosome banding patterns of Saimiri vanzolinii Ayres, 1985 (Primater, Cebidae). Pap Avul Zool 36:165–168Google Scholar

Copyright information

© Japan Monkey Centre and Springer Japan 2014

Authors and Affiliations

  • Manuel Ruiz-García
    • 1
  • Kelly Luengas-Villamil
    • 1
  • Norberto Leguizamon
    • 2
  • Benoit de Thoisy
    • 3
  • Hugo Gálvez
    • 4
  1. 1.Unidad de Genética. Laboratorio de Genética de Poblaciones-Biología Evolutiva. Departamento de Biología. Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
  2. 2.Secretaria Distrital Ambiental (SDA)BogotáColombia
  3. 3.Laboratoire des Interactions Virus-HotesInstitut Pasteur de la GuyaneCayenne CedexFrench Guiana
  4. 4.Instituto Veterinario de Investigaciones Tropicales y de Altura, Estación ExperimentalIquitosPeru

Personalised recommendations