Advertisement

Primates

, Volume 56, Issue 1, pp 37–44 | Cite as

Population genetics of the California National Primate Research Center’s (CNPRC) captive Callicebus cupreus colony

  • Adrian Mendoza
  • Jillian Ng
  • Karen L. Bales
  • Sally P. Mendoza
  • Debra A. George
  • David Glenn Smith
  • Sree KanthaswamyEmail author
Original Article

Abstract

The California National Primate Research Center maintains a small colony of titi monkeys (Callicebus cupreus) for behavioral studies. While short tandem repeat (STR) markers are critical for the genetic management of the center’s rhesus macaque (Macaca mulatta) breeding colony, STRs are not used for this purpose in the maintenance of the center’s titi monkey colony. Consequently, the genetic structure of this titi monkey population has not been characterized. A lack of highly informative genetic markers in titi monkeys has also resulted in scant knowledge of the species’ genetic variation in the wild. The purpose of this study was to develop a panel of highly polymorphic titi monkey STRs using a cross-species polymerase chain reaction (PCR) amplification protocol that could be used for the genetic management of the titi monkey colony. We screened 16 STR primer pairs and selected those that generated robust and reproducible polymorphic amplicons. Loci that were found to be highly polymorphic, very likely to be useful for parentage verification, pedigree assessment, and studying titi monkey population genetics, were validated using Hardy–Weinberg equilibrium and linkage disequilibrium analyses. The genetic data generated in this study were also used to assess directly the impact on the colony’s genetic diversity of a recent adenovirus outbreak. While the adenovirus epizootic disease caused significant mortality (19 deaths among the 65 colony animals), our results suggest that the disease exhibited little or no influence on the overall genetic diversity of the colony.

Keywords

Genetic management Population genetic structure Captive populations Closed colony Paternity Cross-species amplification Red or coppery titi monkey 

Notes

Acknowledgments

This study was supported by the California National Primate Research Center (CNPRC) base Grant (OD000169-48), as well as grants from the Good Nature Institute to KB (HD053555 and HD071998). This research adhered to the American Society of Primatologists’ principles for the ethical treatment of primates. Animals used in this research were managed in compliance with Institutional Animal Care and Use Committee (IACUC) regulations or in accordance with the National Institutes of Health guidelines or the US Department of Agriculture regulations prescribing the humane care and use of laboratory animals. The University of California, Davis, and the California National Primate Research Center are AAALAC accredited. The authors are very grateful to the reviewers for their thorough and insightful comments, which considerably improved the manuscript.

References

  1. Babb PL, McIntosh AM, Fernandez-Duque E, Di Fiore A, Schurr TG (2011) An optimized microsatellite genotyping strategy for assessing genetic identity and kinship in Azara’s owl monkeys (Aotus azarai). Folia Primatol 82:107–117. doi: 10.1159/000330564 PubMedCrossRefGoogle Scholar
  2. Bailey C, Mansfield K (2010) Emerging and reemerging infectious diseases of nonhuman primates in the laboratory setting. Vet Pathol 47:462–481. doi: 10.1177/0300985810363719 PubMedCrossRefGoogle Scholar
  3. Becker J, Baker AJ, Frampton T, Pullen PK, Bales KL, Mendoza SP, Mason WA (2013) Pitheciines in captivity: challenges and opportunities, past, present and future. In: Veiga LM, Barnett AA, Ferrari SF, Norconk MA (eds) Evolutionary biology and conservation of Titis, Sakis and Uacaris. Cambridge University Press, New York, pp 344–349CrossRefGoogle Scholar
  4. Chambers KE, Reichard UH, Moller A, Nowak K, Vigilant L (2004) Cross-species amplification of human microsatellite markers using noninvasive samples from white-handed gibbons (Hylobates lar). Am J Primatol 64:19–27. doi: 10.1002/ajp.20058 PubMedCrossRefGoogle Scholar
  5. Chen EC, Yagi S, Kelly KR, Mendoza SP, Tarara RP, Canfield DR, Maninger N, Rosenthal A, Spinner A, Bales KL, Schnurr DP, Lerche NW, Chiu CY (2011) Cross-species transmission of a novel adenovirus associated with a fulminant pneumonia outbreak in a new world monkey colony. PLoS Pathog 7:e1002155. doi: 10.1371/journal.ppat.1002155 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Di Fiore A, Fleischer RC (2004) Microsatellite markers for woolly monkeys (Lagothrix lagotricha) and their amplification in other new world primates (Primates: Platyrrhini). Mol Ecol Notes 4:246–249. doi: 10.1111/j.1471-8286.2004.00631.x CrossRefGoogle Scholar
  7. Ellsworth JA, Hoelzer GA (1998) Characterization of microsatellite loci in a new world primate, the mantled howler monkey (Alouatta palliata). Mol Ecol 7:657–658. doi: 10.1046/j.1365-294X.1998.00340.x PubMedCrossRefGoogle Scholar
  8. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50. doi: 10.4137/ebo.s0 PubMedCentralGoogle Scholar
  9. Fernandez-Duque E, Valeggia CR, Mason WA (2000) Effects of pair-bond and social context on male-female interactions in captive titi monkeys (Callicebus moloch, Primates: Cebidae). Ethology 106:1067–1082. doi: 10.1046/j.1439-0310.2000.00629.x CrossRefGoogle Scholar
  10. Goncalves EC, Silva A, Barbosa MSR, Schneider MPC (2004) Isolation and characterization of microsatellite loci in Amazonian red-handed howlers Alouatta belzebul (Primates, Plathyrrini). Mol Ecol Notes 4:406–408. doi: 10.1111/j.1471-8286.2004.00667.x CrossRefGoogle Scholar
  11. Goudet J, Raymond M, de Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1931–1938Google Scholar
  12. Gualda-Barros J, Nascimento FOd, Amaral MKd (2012) A new species of Callicebus Thomas, 1903 (Primates, Pitheciidae) from the states of Mato Grosso and Pará, Brazil. Papéis Avulsos de Zoologia (São Paulo) 52:261–279CrossRefGoogle Scholar
  13. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372. doi: 10.2307/2532296 PubMedCrossRefGoogle Scholar
  14. Hershkovitz P (1988) Origin, speciation, and distribution of South American titi monkeys, genus Callicebus (Family Cebidae, Platyrrhini). Proc Acad of Natl Sci Phila 140:240–272. doi: 10.2307/4064927 Google Scholar
  15. Hershkovitz P (1990) Titis, new world monkeys of the genus Callicebus (Cebidae, Platyrrhini): a preliminary taxonomic review. Fieldiana Zool n.s.:1–109Google Scholar
  16. Hughes CR, Queller DC (1993) Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism. Mol Ecol 2:131–137. doi: 10.1111/j.1365-294X.1993.tb00102.x PubMedCrossRefGoogle Scholar
  17. Jones AG, Small CM, Paczolt KA, Ratterman NL (2010) A practical guide to methods of parentage analysis. Mol Ecol Resour 10:6–30. doi: 10.1111/j.1755-0998.2009.02778.x PubMedCrossRefGoogle Scholar
  18. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. doi: 10.1111/j.1365-294X.2007.03089.x PubMedCrossRefGoogle Scholar
  19. Kanthaswamy S, von Dollen A, Kurushima JD, Alminas O, Rogers J, Ferguson B, Lerche NW, Allen PC, Smith DG (2006) Microsatellite markers for standardized genetic management of captive colonies of rhesus macaques (Macaca mulatta). Am J Primatol 68:73–95. doi: 10.1002/ajp.20207 PubMedCrossRefGoogle Scholar
  20. Kanthaswamy S, Satkoski J, Kou A, Malladi V, Smith DG (2010) Detecting signatures of inter-regional and inter-specific hybridization among the Chinese rhesus macaque specific pathogen-free (SPF) population using single nucleotide polymorphic (SNP) markers. J Med Primatol 39:252–265PubMedCentralPubMedCrossRefGoogle Scholar
  21. Kanthaswamy S, Ng J, Penedo MC, Ward T, Smith DG, Ha JC (2012) Population genetics of the Washington National Primate Research Center’s (WaNPRC) captive pigtailed macaque (Macaca nemestrina) population. Am J Primatol 74:1017–1027. doi: 10.1002/ajp.22055 PubMedCrossRefGoogle Scholar
  22. Kinzey WG (1981) The Titi Monkeys, Genus Callicebus. In: Coimbra-Filho AF, Mittermeier RA (eds) Ecology and behavior of Neotropical Primates, vol 1. Academia Brasileira de Ciencias, Rio de Janeiro, pp 241–276Google Scholar
  23. Lorenz R, Mason WA (1971) Establishment of a colony of Titi monkeys. International Zoo Yearbook 11:168–174. doi: 10.1111/j.1748-1090.1971.tb01896.x CrossRefGoogle Scholar
  24. Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi: 10.1046/j.1365-294x.1998.00374.x PubMedCrossRefGoogle Scholar
  25. Mason WA (1966) Social organization of the South Ameican monkey, Callicebus moloch: a preliminary report. Tulane stud zool 13:23–28Google Scholar
  26. Mendoza SP, Mason WA (1986) Contrasting responses to intruders and to involuntary separation by monogamous and polygynous new world monkeys. Physiol Behav 38:795–801PubMedCrossRefGoogle Scholar
  27. Menescal LA, Goncalves EC, Silva A, Ferrari SF, Schneider MP (2009) Genetic diversity of red-bellied Titis (Callicebus moloch) from Eastern Amazonia based on microsatellite markers. Biochem Genet 47:235–240. doi: 10.1007/s10528-008-9220-4 PubMedCrossRefGoogle Scholar
  28. Moore CM, Leland MM, Brzyski RG, McKeand J, Witte SM, Rogers J (1998) A baboon (Papio hamadryas) with an isochromosome for the long arm of the X. Cytogenet Cell Genet 82:80–82PubMedCrossRefGoogle Scholar
  29. Muniz L, Vigilant L (2008) Permanent genetic resources: isolation and characterization of microsatellite markers in the white-faced capuchin monkey (Cebus capucinus) and cross-species amplification in other new world monkeys. Mol Ecol Resour 8:402–405. doi: 10.1111/j.1471-8286.2007.01971.x PubMedCrossRefGoogle Scholar
  30. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedCentralPubMedGoogle Scholar
  31. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  32. Rogers J, Bergstrom M, Garcia Rt, Kaplan J, Arya A, Novakowski L, Johnson Z, Vinson A, Shelledy W (2005) A panel of 20 highly variable microsatellite polymorphisms in rhesus macaques (Macaca mulatta) selected for pedigree or population genetic analysis. Am J Primatol 67:377–383. doi: 10.1002/ajp.20192 PubMedCrossRefGoogle Scholar
  33. Smith KL, Alberts SC, Bayes MK, Bruford MW, Altmann J, Ober C (2000) Cross-species amplification, non-invasive genotyping, and non-Mendelian inheritance of human STRPs in Savannah baboons. Am J Primatol 51:219–227. doi: 10.1002/1098-2345(200008)51:4<219:AID-AJP1>3.0.CO;2-G PubMedCrossRefGoogle Scholar
  34. Stanyon R, Bonvicino CR, Svartman M, Seuanez HN (2003) Chromosome painting in Callicebus lugens, the species with the lowest diploid number (2n = 16) known in primates. Chromosoma 112:201–206. doi: 10.1007/s00412-003-0261-5 PubMedCrossRefGoogle Scholar
  35. Valeggia CR, Mendoza SP, Fernandez-Duque E, Mason WA, Lasley B (1999) Reproductive biology of female titi monkeys (Callicebus moloch) in captivity. Am J Primatol 47:183–195. doi: 10.1002/(SICI)1098-2345(1999)47:3<183:AID-AJP1>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  36. van Roosmalen MGM, van Roosmalen T, Mittermeier RA (2002) A taxonomic review of the titi monkeys, genus Callicebus Thomas, 1903, with the description of two new species, Callicebus bernhardi and Callicebus stephennashi, from Brazilian Amazonia. Neotrop Primates 10:1–52Google Scholar
  37. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  38. Walling CA, Pemberton JM, Hadfield JD, Kruuk LE (2010) Comparing parentage inference software: reanalysis of a red deer pedigree. Mol Ecol 19:1914–1928. doi: 10.1111/j.1365-294X.2010.04604.x PubMedCrossRefGoogle Scholar
  39. Wright S (1978) Evolution and the genetics of populations : a treatise in four volumes. University of Chicago Press, Chicago, LondonGoogle Scholar
  40. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi: 10.1046/j.0962-1083.2001.01418.x PubMedCrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre and Springer Japan 2014

Authors and Affiliations

  • Adrian Mendoza
    • 1
  • Jillian Ng
    • 2
  • Karen L. Bales
    • 3
    • 4
  • Sally P. Mendoza
    • 3
    • 4
  • Debra A. George
    • 2
  • David Glenn Smith
    • 1
    • 2
    • 4
  • Sree Kanthaswamy
    • 1
    • 2
    • 4
    • 5
    • 6
    Email author
  1. 1.University of California Graduate Program in Forensic ScienceUniversity of CaliforniaDavisUSA
  2. 2.Department of AnthropologyUniversity of CaliforniaDavisUSA
  3. 3.Department of PsychologyUniversity of CaliforniaDavisUSA
  4. 4.California National Primate Research CenterUniversity of CaliforniaDavisUSA
  5. 5.Department of Environmental ToxicologyUniversity of CaliforniaDavisUSA
  6. 6.DavisUSA

Personalised recommendations