Primates

, Volume 50, Issue 4, pp 305–310 | Cite as

Rib orientation and implications for orthograde positional behavior in nonhuman anthropoids

  • Miyuki Kagaya
  • Naomichi Ogihara
  • Masato Nakatsukasa
Original Article

Abstract

Strong caudal obliquity of the lower ribs is one of the assumed characteristics of the thoracic region in hominoids and Ateles. Strong caudal obliquity keeps the scapula of the weight-bearing forelimb on the dorsal surface of the trunk via the serratus anterior muscles during propulsion (Stern et al. 1980). We examined the orientation of odd-numbered ribs in lateral view in remounted thoracic skeletons of fifteen nonhuman anthropoids. Hominoids exhibit pronounced caudal obliquity in the seventh and ninth ribs compared to Old and New World monkeys. The position of the maximum thoracic cage width, which approximates the attachment of the serratus anterior muscle, is more caudally located in Hylobates and Pongo. The overall pattern of rib obliquity is generally similar between New and Old World monkeys, including Ateles. Perhaps not only forelimb suspensory behavior but also various orthograde positional behaviors are related to the strong obliquity of the lower ribs; however, further investigation is necessary.

Keywords

Rib obliquity Hominoids Functional adaptation Forelimb suspensory behavior 

References

  1. Boardman W (1941) On the anatomy and functional adaptation of the thorax and pectoral girdle in Wallaroo (Macropus robustus). Proc Linn Soc NSW 66:349–387Google Scholar
  2. Cant JGH (1986) Locomotion and feeding postures of spider and howling monkeys: field study and evolutionary interpretation. Folia Primatol 46:1–14PubMedCrossRefGoogle Scholar
  3. Cant JGH, Youlatos D, Rose MD (2001) Locomotor behavior of Lagothrix lagothricha and Ateles belzebeth in Yasuní national park, Ecuador: general patterns and nonsuspensory modes. J Hum Evol 41:141–166PubMedCrossRefGoogle Scholar
  4. Cartmill M, Milton K (1977) The lorisiform wrist joint and the evolution of “Brachiating” adaptations in the hominoidea. Am J Phys Anthropol 47:249–272PubMedCrossRefGoogle Scholar
  5. Chan LK (1997) Thoracic shape and shoulder biomechanics in primates (Ph.D. dissertation). Duke University, DurhamGoogle Scholar
  6. Davenport CB (1934) The thoracic index. Hum Biol 6:1–23Google Scholar
  7. Fleagle JG (1976) Locomotion and posture of the Malayan siamang and implications for hominoid evolution. Folia Primatol 26:245–269PubMedCrossRefGoogle Scholar
  8. Gebo DL (1996) Climbing, brachiation, and terrestrial quadrupedalism: historical precursors of hominid bipedalism. Am J Phys Anthropol 101:55–92PubMedCrossRefGoogle Scholar
  9. Harrison T (1986) A reassessment of the phylogenetic relationships of Oreopithecus bambolii Gervais. J Hum Evol 15:541–583CrossRefGoogle Scholar
  10. Hartman CG, Straus WL Jr (eds) (1965) The anatomy of the rhesus monkey (Macaca mulatta). Hafner, New YorkGoogle Scholar
  11. Hill WCO (1939) Observations on a giant Sumatran orang. Am J Phys Anthropol 24:449–510CrossRefGoogle Scholar
  12. Hunt KD (1991a) Positional behavior in the Hominoidea. Int J Primatol 12:95–118CrossRefGoogle Scholar
  13. Hunt KD (1991b) Mechanical implications of chimpanzee positional behavior. Am J Phys Anthropol 86:521–536PubMedCrossRefGoogle Scholar
  14. Jellema LM, Latimer B, Walker A (1993) The rib cage. In: Walker A, Leakey R (eds) The Nariokocome Homo erectus skeleton. Harvard University Press, Cambridge, pp 294–325Google Scholar
  15. Jungers WL (1984) Scaling of the hominoid locomotor skeleton with special reference to lesser apes. In: Preuschoft H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes: evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 146–169Google Scholar
  16. Kagaya M, Ogihara N, Nakatsukasa M (2008) Morphological study of the anthropoid thoracic cage: scaling of thoracic width and analysis of rib curvature. Primates 49:89–99PubMedCrossRefGoogle Scholar
  17. Larson SG (1998) Parallel evolution in the hominoid trunk and forelimb. Evol Anthropol 6:87–99CrossRefGoogle Scholar
  18. Larson SG, Stern JT Jr, Jungers WL (1991) EMG of serratus anterior and trapezius in the chimpanzee: scapular rotators revisited. Am J Phys Anthropol 85:71–84PubMedCrossRefGoogle Scholar
  19. Preuschoft H, Schmidt M, Hayama S, Okada M (2003) The influence of three-dimensional movements of the forelimb on the shape of the thorax and its importance for erect body posture. Cour Forsch-Inst Senckenberg 243:9–24Google Scholar
  20. Sarmiento EE (1995) Cautious climbing and folivory: a model of hominoid differentiation. Hum Evol 10:289–321CrossRefGoogle Scholar
  21. Schultz AH (1960) Einige Beobachtungen und Maße am Skelett von Oreopithecus im Vergleich mit anderen catarrhinen Primaten. Z Morph Anthropol 50:136–149Google Scholar
  22. Schultz AH (1961) Vertebral column and thorax. Primatologia 4:1–66Google Scholar
  23. Stern JT Jr, Wells JP, Jungers WL, Vangor AK (1980) An electromyographic study of serratus anterior in Atelines and Alouatta: implications for hominoid evolution. Am J Phys Anthropol 52:323–334Google Scholar
  24. Swindler DR, Wood CD (1982) An atlas of primate gross anatomy: baboon, chimpanzee, and man. Robert E. Krieger, MalabarGoogle Scholar
  25. Takahashi LK (1990) Morphological basis of arm-swinging: multivariate analyses of the forelimbs of Hylobates and Ateles. Folia Primatol 54:70–85PubMedCrossRefGoogle Scholar
  26. Turnquist JE, Schmitt D, Rose MD, Cant JGH (1999) Pendular motion in the brachiation of captive Lagothrix and Ateles. Am J Primatol 48:263–282PubMedCrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre and Springer 2009

Authors and Affiliations

  • Miyuki Kagaya
    • 1
    • 2
  • Naomichi Ogihara
    • 1
  • Masato Nakatsukasa
    • 1
  1. 1.Laboratory of Physical Anthropology, Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
  2. 2.Département Histoire de la TerreMuséum National d’Histoire NaturelleParis Cedex 05France

Personalised recommendations