Advertisement

First report of stem blight on Joseph’s coat amaranth (Amaranthus tricolor L.) caused by Diaporthe amaranthophila (Inácio, Dianese & Carlos) Rossman & Udayanga in Japan

  • Ayaka Minoshima
  • Noriko Orihara
  • Kaoru Minoguchi
  • Seiju Ishikawa
  • Yuuri HirookaEmail author
Disease Note

Abstract

In September 2015, stem blight was found on Joseph’s coat amaranth (Amaranthus tricolor) in Kanagawa, Japan. A fungus was isolated from brown spots on the stems and leaves. After our inoculation tests using the isolated fungus, the same symptoms were observed in the field. The pathogen was identified as Diaporthe amaranthophila based on morphological and molecular analyses. This is the first report of D. amaranthophila as a pathogen of stem blight on Joseph’s coat amaranth in Japan.

Keywords

Diaporthales Phomopsis amaranthi Phylogeny New disease Pigweed C conidia 

Notes

Acknowledgements

We thank Dr. Hiromichi Horie for hosting a collecting trip that aided in the discovery of this disease. We also thank Tomoko Ohta for advising us about molecular methods.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10327_2019_885_MOESM1_ESM.pdf (260 kb)
Supplementary file1 (PDF 259 kb)

References

  1. Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556CrossRefGoogle Scholar
  2. Crous PW, Groenewald JZ, Risede JM, Hywel-Jones NL (2004) Calonectria species and their Cylindrocladium anamorphs: species with sphaeropedunculate vesicles. Stud Mycol 50:415–430Google Scholar
  3. Délano-Frier JP, Avilés-Arnaut H, Casarrubias-Castillo K, Casique-Arroyo G, Castrillón-Arbeláez PA, Herrera-Estrella L, Massange-Sánchez J, Martínez-Gallardo NA, Parra-Cota FI, Vargas-Ortiz E, Estrada-Hernández MG (2011) Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genom 12:363CrossRefGoogle Scholar
  4. Dissanayake AJ, Phillip AJL, Hyde KD, Yan JY, Li XH (2017) The current status of species in Diaporthe. Mycosphere 8:1106–1156CrossRefGoogle Scholar
  5. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323–1330PubMedPubMedCentralGoogle Scholar
  6. Inácio CA, Dianese JC, Carlos RME (1999) Phomopsis amaranthophila sp. Nov., a new coelomycete pathogenic to Amaranthus tricolor in Brazil. Fitopatol Bras 24:185–189Google Scholar
  7. Katoh T, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780CrossRefGoogle Scholar
  8. Liu S, Kuang H, Lai Z (2014) Transcriptome analysis by illumina high-throughout paired-end sequencing reveals the complexity of differential gene expression during in vitro plantlet growth and flowering in Amaranthus tricolor L. PLoS ONE 9:e100919CrossRefGoogle Scholar
  9. Maddison WP, Maddison DR (2017) Mesquite: a modular system for evolutionary analysis. Version 3.31. Available via DIALOG https://mesquiteproject.org. Cited 20 Sep 2017
  10. Marin-Felix Y, Hernández-Restrepo M, Wingfield MJ, Akulov A, Carnegie AJ, Cheewangkoon R, Gramaje D, Groenewald JZ, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher RK, Spies CFJ, Thangavel R, Taylor PWJ, Wilson AM, Wingfield BD, Wood AR, Crous PW (2019) Genera of phytopathogenic fungi: GOPHY 2. Stud Mycol 92:47–133CrossRefGoogle Scholar
  11. Mosyakin SL, Robertson KR (2003) Amaranthus. In: Flora of North America Editorial Committee (eds) Flora of North America north of Mexico, vol 4, Oxford University Press, New York, pp 410–435Google Scholar
  12. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116CrossRefGoogle Scholar
  13. Ohashi H, Murata J, Iwatsuki K (2008) New Makino’s illustrated flora of Japan (in Japanese). Tokyo, Hokuryukan Co. Ltd., p 111Google Scholar
  14. Pal A, Swain SS, Das AB, Mukherjee AK, Chand PK (2013) Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. Cell Dev Biol Plant 49:114–128CrossRefGoogle Scholar
  15. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  16. Rosskopf EN, Charudattan R, Devalerio JT (1993) Phomopsis amaranthicola n. sp.: a species pathogenic to Amaranthus sp. (Abstract). Phytopathol 83:1385Google Scholar
  17. Rosskopf EN, Charudattan R, Shabana YM, Benny GL (2000) Phomopsis amaranthicola, a new species from Amaranthus sp. Mycologia 92:114–122CrossRefGoogle Scholar
  18. Rosskopf EN, Yandoc CB, Charudattan R, DeValerio JT (2005) Influence of epidemiological factors on the bioherbicidal efficacy of Phomopsis amaranthicola on Amaranthus hybridus. Plant Dis 89:1295–1300CrossRefGoogle Scholar
  19. Rossman AY, Adams GC, Cannon PF, Castlebury LA, Crous PW, Gryzenhout M, Jaklitsch WM, Mejia LC, Stoykov D, Udayanga D, Voglmayr H, Walker DM (2015) Recommendations of generic names in Diaporthales competing for protection or use. IMA Fungus 6:145–154CrossRefGoogle Scholar
  20. Santos L, Alves A, Alves R (2017) Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ 5:e3120CrossRefGoogle Scholar
  21. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (and other methods). Version 4. Sinauer, SunderlandGoogle Scholar
  22. Ubrizsy G, Vörös J (1966) Phytopathogenic and saprophytic fungi from Hungary, I. Acta Phytopathol Acad Sci Hung 1:145–163Google Scholar
  23. Udayanga D, Liu X, McKenzie EHC, Chukeatirote E, Bahkali AHA, Hyde KD (2011) The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. Fungal Divers 50:189–225CrossRefGoogle Scholar
  24. Udayanga D, Castlebury LA, Rossman AY, Hyde KD (2014) Species limits in Diaporthe: molecular re-assessment of D. citri, D. cytosporella, D. foeniculina and D. rudis. Persoonia 32:83–101CrossRefGoogle Scholar
  25. Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD (2015) The Diaporthe sojae species complex: phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biol 119:383–407CrossRefGoogle Scholar
  26. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Ayaka Minoshima
    • 1
  • Noriko Orihara
    • 2
  • Kaoru Minoguchi
    • 3
  • Seiju Ishikawa
    • 1
  • Yuuri Hirooka
    • 1
    Email author
  1. 1.Department of Clinical Plant Science, Faculty of BioscienceHosei UniversityKoganeiJapan
  2. 2.Kanagawa Prefectural Agriculture Technology CenterKanagawaJapan
  3. 3.Yokosuka-Miura Region Prefectural Administration CenterKanagawaJapan

Personalised recommendations