Advertisement

Journal of General Plant Pathology

, Volume 85, Issue 3, pp 163–173 | Cite as

Cell biology in phytopathogenic fungi during host infection: commonalities and differences

  • Kenichi IkedaEmail author
  • Pyoyun Park
  • Hitoshi Nakayashiki
Review

Abstract

During infection of the host plant, various biological processes facilitate host invasion, including the physical invasion of the host, and subsequent adaptation to the host’s internal environment. During these processes, cellular biological changes result in host adhesion, morphogenetic differentiation via the sensing of plant-derived signals, and maturation of infection structures via reorientation of the cytoskeleton. Changes in lipid and sugar metabolism in fungi generate energy for survival, turgor pressure, and melanin synthesis. Moreover, phytopathogenic fungi produce numerous types of effectors used in the evasion of host defense systems and to establish a suitable environment for nutrient exploitation. However, infection systems seem to vary between fungal species because of differences in their evolutionary origin.

Keywords

Pathogenicity Adhesion Penetration Appressorium Hyphopodium Cytoskeleton Effectors Pyricularia oryzae 

Notes

Acknowledgements

This research was supported by Grants-in-Aid for Scientific Research B (No. 18380033), Grants-in-Aid for Young Scientists B (No. 19780036), Grants-in-Aid for Young Scientists A (No. 23688006), and Grants-in-Aid for Challenging exploratory Research (17K19266) from the Japan Society for the Promotion of Science.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Adachi K, Hamer JE (1998) Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10:1361–1374CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493CrossRefPubMedPubMedCentralGoogle Scholar
  3. Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y (2009) Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21:1291–1304CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bae CY, Kim S, Choi WB, Lee YH (2007) Involvement of extracellular matrix and integrin-like proteins on conidial adhesion and appressorium differentiation in Magnaporthe oryzae. J Microbiol Biotechnol 17:1198–1203PubMedGoogle Scholar
  5. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451CrossRefGoogle Scholar
  6. Bellincampi D, Cervone F, Lionetti V (2014) Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions. Front Plant Sci 5:228CrossRefPubMedPubMedCentralGoogle Scholar
  7. Birch PRJ, Boevink PC, Gilroy EM, Hein I, Pritchard L, Whisson SC (2008) Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11:373–379CrossRefPubMedGoogle Scholar
  8. Boenisch MJ, Schäfer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110CrossRefPubMedPubMedCentralGoogle Scholar
  9. Braun EJ, Howard RJ (1994) Adhesion of fungal spores and germlings to host plant surfaces. Protoplasma 181:202–212CrossRefGoogle Scholar
  10. Brun S, Malagnac F, Bidard F, Lalucque H, Silar P (2009) Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74:480–496CrossRefPubMedGoogle Scholar
  11. Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3:1525–1532CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carver TLW, Bushnell WR (1983) The probable role of primary germ tubes in water uptake before infection by Erysiphe graminis. Physiol Plant Pathol 23:229–240CrossRefGoogle Scholar
  14. Celerin M, Ray JM, Schisler NJ, Day AW, Steter-Stevenson WG, Laudenbach DE (1996) Fungal fimbriae are composed of collagen. EMBO J 15:4445–4453CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chanclud E, Kisiala A, Emery NRJ, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog 12:e1005457CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chang HX, Miller LA, Hartman GL (2014) Melanin-independent accumulation of turgor pressure in appressoria of Phakopsora pachyrhizi. Phytopathology 104:977–984CrossRefPubMedGoogle Scholar
  17. Chen XL, Wang Z, Liu C (2016) Roles of peroxisomes in the rice blast fungus. Biomed Res Int 2016:9343417PubMedPubMedCentralGoogle Scholar
  18. Cho Y, Cramer RA Jr, Kim KH, Davis J, Mitchell TK, Figuli P, Pryor BM, Lemasters E, Lawrence CB (2007) The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol 44:543–553CrossRefPubMedGoogle Scholar
  19. Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983CrossRefPubMedPubMedCentralGoogle Scholar
  20. Corrêa A, Staples RC, Hoch HC (1996) Inhibition of thigmostimulated cell differentiation with RGD-peptides in Uromyces germlings. Protoplasma 194:91–102CrossRefGoogle Scholar
  21. Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E, Steinberg G, Talbot NJ (2012) Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590–1595CrossRefPubMedGoogle Scholar
  22. Davis DJ, Burlak C, Money NP (2000) Osmotic pressure of fungal compatible osmolytes. Mycol Res 104:800–804CrossRefGoogle Scholar
  23. de Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245CrossRefGoogle Scholar
  24. de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A (2015) Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS Pathog 11:e1005228CrossRefPubMedPubMedCentralGoogle Scholar
  25. DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030CrossRefPubMedPubMedCentralGoogle Scholar
  26. Dean RA, Lee YH, Mitchell TK, Whitehead DS (1994) Signalling systems and gene expression regulating appressorium formation in Magnaporthe grisea. In: Zeigler RS et al (eds) Rice blast disease. CAB International, Wallingford, pp 23–34Google Scholar
  27. Ding SL, Liu W, Iliuk A, Ribot C, Vallet J, Tao A, Wang Y, Lubrun MH, Xu JR (2010) The Tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2495–2508CrossRefPubMedPubMedCentralGoogle Scholar
  28. Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058CrossRefPubMedPubMedCentralGoogle Scholar
  29. Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772–11777CrossRefPubMedGoogle Scholar
  30. El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB (2002) Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156:103–112CrossRefGoogle Scholar
  31. Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:399–405CrossRefPubMedGoogle Scholar
  32. Emmett RW, Parbery DG (1975) Appressoria. Annu Rev Phytopathol 13:147–167CrossRefGoogle Scholar
  33. Fujikawa T, Kuga Y, Yano S, Yoshimi A, Tachiki T, Abe K, Nishimura M (2009) Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol Microbiol 73:553–570CrossRefPubMedGoogle Scholar
  34. Fukada F, Kubo Y (2015) Colletotrichum orbiculare regulates cell cycle G1/S progression via a two-component GAP and a GTPase to establish plant infection. Plant Cell 27:2530–2544CrossRefPubMedPubMedCentralGoogle Scholar
  35. Galhano R, Illana A, Ryder LS, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha AL, Soanes DM, Studholme DJ, Talbot NJ, Sesma A (2017) Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog 13:1006516CrossRefGoogle Scholar
  36. Gilbert RD, Johnson AM, Dean RA (1996) Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol Mol Plant Pathol 48:335–346CrossRefGoogle Scholar
  37. Giraldo MC, Valent B (2013) Filamentous plant pathogen effectors in action. Nat Rev Microbiol 11:800–814CrossRefPubMedGoogle Scholar
  38. Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hamer JE, Howard RJ, Chumley FG, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290CrossRefPubMedGoogle Scholar
  40. Harata K, Nishiuchi T, Kubo Y (2016) Colletotrichum orbiculare WHI2, a yeast stress-response regulator homolog, controls the biotrophic stage of hemibiotrophic infection through TOR signaling. Mol Plant Microbe Interact 29:468–483CrossRefPubMedGoogle Scholar
  41. He M, Kershaw MJ, Soanes DM, Xia Y, Talbot NJ (2009) Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy. PLoS One 7:e33270CrossRefGoogle Scholar
  42. Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127CrossRefPubMedGoogle Scholar
  43. Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284CrossRefPubMedGoogle Scholar
  44. Huang K, Czymmek KJ, Caplan JL, Sweigard JA, Donofrio NM (2011) HYR-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog 7:e1001335CrossRefPubMedPubMedCentralGoogle Scholar
  45. Inoue K, Suzuki T, Ikeda K, Jiang S, Hosogi N, Hyon GS, Hida S, Yamada T, Park P (2007) Extracellular matrix of Magnaporthe oryzae may have a role in host adhesion during fungal penetration and is digested by matrix metalloproteinases. J Gen Plant Pathol 73:388–398CrossRefGoogle Scholar
  46. Inoue K, Kitaoka H, Park P, Ikeda K (2016) Novel aspects of hydrophobins in wheat isolate of Magnaporthe oryzae Mpg1, but not Mhp1, is essential for adhesion and pathogenicity. J Gen Plant Pathol 82:18–28CrossRefGoogle Scholar
  47. Inoue K, Onoe T, Park P, Ikeda K (2011) Enzymatic detachment of spore germlings in Magnaporthe oryzae. FEMS Microbiol Lett 323:13–19CrossRefPubMedGoogle Scholar
  48. Irieda H, Maeda H, Akiyama K, Hagiwara A, Saitoh H, Uemura A, Terauchi R, Takano Y (2014) Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 26:2265–2281CrossRefPubMedPubMedCentralGoogle Scholar
  49. Irieda H, Inoue Y, Mori M, Yamada K, Oshikawa Y, Saitoh H, Uemura A, Terauchi R, Kitakura S, Kosaka A, Singkaravanit-Ogawa S, Takano Y (2019) Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc Natl Acad Sci USA 116:496–505CrossRefPubMedGoogle Scholar
  50. Izumitsu K, Kimura S, Kobayashi H, Morita A, Saitoh Y, Tanaka C (2010) Class I hydrophobin BcHpb1 is important for adhesion but not for later infection of Botrytis cinerea. J Gen Plant Pathol 76:254–260CrossRefGoogle Scholar
  51. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822CrossRefPubMedGoogle Scholar
  52. Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kayano Y, Tanaka A, Takemoto D (2018) Two closely related Rho GTPases, Cdc42 and RacA, of the endophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant. PLoS Pathog 14:e1006840CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA 106:15967–15972CrossRefPubMedGoogle Scholar
  55. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to cell movement. Plant Cell 22:1388–1403CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kim S, Ahn IP, Rho HS, Lee YH (2005) MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57:1224–1237CrossRefPubMedGoogle Scholar
  57. Kitagawa H, Shimoi S, Inoue K, Park P, Ikeda K (2014) Durable and broad-spectrum disease protection measure against airborne phytopathogenic fungi by using the detachment action of gelatinolytic bacteria. Biol Control 71:1–6CrossRefGoogle Scholar
  58. Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W, Schmelzer E, O’Connell RJ (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8:e1002643CrossRefPubMedPubMedCentralGoogle Scholar
  59. Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206CrossRefGoogle Scholar
  60. Kodama S, Ishizuka J, Miyashita I, Ishii T, Nishiuchi T, Miyoshi H, Kubo Y (2017) The morphogenesis-related NDR kinase pathway of Colletotrichum orbiculare is required for translating plant surface signals into infection-related morphogenesis and pathogenesis. PLoS Pathog 13:e1006189CrossRefPubMedPubMedCentralGoogle Scholar
  61. Kots K, Meijer HJG, Bouwmeester K, Govers F, Ketelaar T (2017) Filamentous actin accumulates during plant cell penetration and cell wall plug formation in Phytophthora infestans. Cell Mol Life Sci 74:909–920CrossRefPubMedGoogle Scholar
  62. Lacroix H, Whiteford JR, Spanu PD (2008) Localization of Cladosporium fulvum hydrophobins reveals a role for HCf-6 in adhesion. FEMS Microbiol Lett 286:136–144CrossRefPubMedGoogle Scholar
  63. Lee YH, Dean RA (1993) cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lee YH, Dean RA (1994) Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett 115:71–75CrossRefGoogle Scholar
  65. Lee N, D’Souza CA, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 41:399–427CrossRefPubMedGoogle Scholar
  66. Li G, Zhang X, Tian H, Choi YE, Tao WA, Xu JR (2017a) MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol 19:1959–1974CrossRefPubMedGoogle Scholar
  67. Li X, Gao C, Li L, Liu M, Yin Z, Zhang H, Zheng X, Wang P, Zhang Z (2017b) MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog 13:e1006449CrossRefPubMedPubMedCentralGoogle Scholar
  68. Li Y, Zhang X, Hu S, Liu H, Xu JR (2017c) PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. PLoS Genet 13:e1006954CrossRefPubMedPubMedCentralGoogle Scholar
  69. Liu S, Dean RA (1997) G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075–1086CrossRefPubMedGoogle Scholar
  70. Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI (2007) Rgs1 regulates multiple Gα subunit in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J 26:690–700CrossRefPubMedPubMedCentralGoogle Scholar
  71. Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu JR (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7:e1001261CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ludwig N, Lohrer M, Hempel M, Mathea S, Schliebner I, Menzel M, Kiesow A, Schaffrath U, Deising HB, Horbach R (2014) Melanin is not required for turgor generation but enhances cell wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola. Mol Plant Microbe Interact 27:315–327CrossRefPubMedGoogle Scholar
  73. Marroquin-Guzman M, Wilson RA (2015) GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling. PLoS Pathog 11:e1004851CrossRefPubMedPubMedCentralGoogle Scholar
  74. Marroquin-Guzman M, Hartline D, Wright JD, Elowsky C, Bourret TJ, Wilson RA (2017) The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease. Nat Microbiol 2:17054CrossRefPubMedGoogle Scholar
  75. Marshall DS, Rush MC (1980) Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology 70:947–950CrossRefGoogle Scholar
  76. Mehrabi R, Zwiers LH, deWaard MA, Kema GHJ (2006) MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact 19:1262–1269CrossRefGoogle Scholar
  77. Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335CrossRefPubMedPubMedCentralGoogle Scholar
  78. Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226CrossRefPubMedGoogle Scholar
  79. Mijaljica D, Devenish RJ (2013) Nucleophagy at a glance. J Cell Sci 126:4325–4330CrossRefPubMedGoogle Scholar
  80. Morita Y, Hyon GS, Hosogi N, Miyata N, Nakayashiki H, Muranaka Y, Inada N, Park P, Ikeda K (2013) Appressorium-localized NADPH oxidase B is essential for aggressiveness and pathogenicity in the host-specific, toxin-producing fungus Alternaria alternata Japanese pear pathotype. Mol Plant Pathol 14:365–378CrossRefPubMedGoogle Scholar
  81. Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290CrossRefPubMedPubMedCentralGoogle Scholar
  82. Nimuchuk Z, Eulgem T, Holt BF III, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609CrossRefGoogle Scholar
  83. Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21:87–116CrossRefPubMedGoogle Scholar
  84. O’Connell RJ, Pain NA, Hutchison KA, Jones GL, Green JR (1996) Ultrastructure and composition of the cell surfaces of infection structures formed by the fungal plant pathogen Colletotrichum lindemuthianum. J Microsc 181:204–212CrossRefGoogle Scholar
  85. Osés-Ruiz M, Sakulkoo W, Littlejohn GR, Martin-Urdiroz M, Talbot NJ (2017) Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Proc Natl Acad Sci USA 114:E237–E244CrossRefPubMedGoogle Scholar
  86. Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6:320–326CrossRefPubMedGoogle Scholar
  87. Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822–2835CrossRefPubMedPubMedCentralGoogle Scholar
  88. Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M, Valent B (2012) The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–4762CrossRefPubMedPubMedCentralGoogle Scholar
  89. Patkar RN, Benke PI, Qu Z, Chen YYC, Yang F, Swarup S, Naqvi NI (2015) A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol 11:733–740CrossRefPubMedGoogle Scholar
  90. Pham KTM, Inoue Y, Vu BV, Nguyen HH, Nakayashiki T, Ikeda K, Nakayashiki H (2015) MoSET1 (histone H3K4 methyltransferase in Magnaporthe oryzae) regulates global gene expression during infection-related morphogenesis. PLoS Genet 11:e1005385CrossRefPubMedPubMedCentralGoogle Scholar
  91. Rui O, Han M (2007) The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol 8:173–184CrossRefPubMedGoogle Scholar
  92. Ryder L, Dagdas YF, Mentlak TA, Kershaw MJ, Thornton CR, Schuster M, Chen J, Wang Z, Talbot NJ (2013) NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc Natl Acad Sci USA 110:3179–3184CrossRefPubMedGoogle Scholar
  93. Sakulkoo W, Osés-Ruiz M, Garcia EO, Soanes DM, Littlejohn GR, Hacker C, Correia A, Valent B, Talbot NJ (2018) A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 359:1399–1403CrossRefPubMedGoogle Scholar
  94. Saunders DGO, Aves AJ, Talbot NJ (2010a) Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell 22:497–507CrossRefPubMedPubMedCentralGoogle Scholar
  95. Saunders DGO, Dagdas YF, Talbot NJ (2010b) Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2417–2428CrossRefPubMedPubMedCentralGoogle Scholar
  96. Segal LM, Wilson RA (2018) Reactive oxygen species metabolism and plant–fungal interactions. Fungal Genet Biol 110:1–9CrossRefPubMedGoogle Scholar
  97. Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAK1, a stress-activated mitogen-activaed protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211–221CrossRefPubMedGoogle Scholar
  98. Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21:808–819CrossRefPubMedGoogle Scholar
  99. Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582–586CrossRefPubMedGoogle Scholar
  100. Shi X, Ling Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang GL, Ning Y (2018) The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathog 14:e1006878CrossRefPubMedPubMedCentralGoogle Scholar
  101. Shimoi S, Inoue K, Kitagawa H, Yamasaki M, Tsushima S, Park P, Ikeda K (2010) Biological control for rice blast disease by employing detachment action with gelatinolytic bacteria. Biol Control 55:85–91CrossRefGoogle Scholar
  102. Shiraishi T, Yamada T, Saitoh K, Kato T, Toyoda K, Yoshioka H, Kim HM, Ichinose Y, Tahara M, Oku H (1994) Suppressors: determinants of specificity produced by plant pathogens. Plant Cell Physiol 35:1107–1119CrossRefGoogle Scholar
  103. Skamnioti P, Henderson C, Zhang Z, Robinson Z, Gurr SJ (2007) A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 20:568–580CrossRefPubMedGoogle Scholar
  104. Soanes DM, Chakrabarti A, Paskiewicz K, Dawe A, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002514CrossRefPubMedPubMedCentralGoogle Scholar
  105. Sun G, Elowsky C, Li G, Wilson RA (2018) TOR-autophagy branch signaling via Imp1 dictates plant–microbe biotrophic interface longevity. PLoS Genet 14:e1007814CrossRefPubMedPubMedCentralGoogle Scholar
  106. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108:2861–2866CrossRefPubMedGoogle Scholar
  107. Talbot NJ, Kershaw MJ, Weakley GE, de Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999CrossRefPubMedPubMedCentralGoogle Scholar
  108. Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066CrossRefPubMedPubMedCentralGoogle Scholar
  109. Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998CrossRefPubMedGoogle Scholar
  110. Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718PubMedPubMedCentralGoogle Scholar
  111. Tucker SL, Besi MI, Galhano R, Franceschetti M, Goetz S, Lenhert S, Osbourn A, Sesma A (2010) Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. Plant Cell 22:953–972CrossRefPubMedPubMedCentralGoogle Scholar
  112. Valent B, Khang CH (2010) Recent advances in rice blast effector research. Curr Opin Plant Biol 13:434–441CrossRefPubMedGoogle Scholar
  113. Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 28:580–583CrossRefGoogle Scholar
  114. Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wang CL, Shaw BD (2016) F-actin localization dynamics during appressorium formation in Colletotrichum graminicola. Mycologia 108:506–514CrossRefPubMedGoogle Scholar
  116. Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123CrossRefPubMedPubMedCentralGoogle Scholar
  117. Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ (2010) An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci USA 107:21902–21907CrossRefPubMedGoogle Scholar
  119. Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646CrossRefPubMedGoogle Scholar
  120. Xiao JZ, Ohshima A, Kamakura T, Ishiyama T, Yamaguchi I (1994) Extracellular glycoprotein(s) associated with cellular differentiation in Magnaporthe grisea. Mol Plant Microbe Interact 7:639–644CrossRefGoogle Scholar
  121. Xu JR, Hamer JH (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706CrossRefPubMedGoogle Scholar
  122. Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase MPS1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713–12718CrossRefPubMedGoogle Scholar
  123. Yang SL, Chung KR (2012) The NADPH oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol Plant Pathol 13:900–914CrossRefPubMedGoogle Scholar
  124. Yang LN, Yin Z, Zhang X, Feng W, Xiao Y, Zhang H, Zheng X, Zhang Z (2018) New findings on phosphodiesterases, MoPdeH and MoPdeL, in Magnaporthe oryzae revealed by structural analysis. Mol Plant Pathol 19:1061–1074CrossRefPubMedGoogle Scholar
  125. Yarwood CE (1950) Water content of fungus spores. Am J Bot 37:636–639CrossRefGoogle Scholar
  126. Zhang N, Cai Gm Price DC, Crouch JA, Gladieux P, Hillman B, Khang CH, LeBrun MH, Lee YH, Luo J, Qiu H, Veltri D, Wisecaver JH, Zhu J, Bhattacharya D (2018) Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi. Sci Rep 8:5862CrossRefPubMedPubMedCentralGoogle Scholar
  127. Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathway and fungal pathogenesis. Eukaryot Cell 6:1701–1714CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zhao YI, Zhou TT, Guo HS (2016) Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog 12:e1005793CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Cell Function and Structure, Graduate School of Agricultural ScienceKobe UniversityKobeJapan

Personalised recommendations