Advertisement

First report of fruit rot on cantaloupe caused by Fusarium equiseti in Thailand

  • Wipornpan NuangmekEmail author
  • Worawoot Aiduang
  • Nakarin Suwannarach
  • Jaturong Kumla
  • Tanongkiat Kiatsiriroat
  • Saisamorn Lumyong
Fungal Diseases
  • 31 Downloads

Abstract

Fruit rot is one of the most important diseases of cantaloupe. In June 2016, fruit rot was found in cantaloupe fruit (Cucumis melo var. cantalupo) in Phayao Province, Thailand. The causal fungus was isolated from lesions and identified as Fusarium equiseti based on both morphological characteristics and phylogenetic analysis of combined sequences of the internal transcribed spacer of ribosomal DNA, translation elongation factor 1-alpha and β-tubulin genes. Cantaloupe fruit inoculated with the isolated fungus developed symptoms similar to natural ones in the field. This is the first report of cantaloupe fruit rot caused by F. equiseti in Thailand.

Keywords

Cucurbit Fruit rot Fungal pathogen Postharvest disease 

Notes

Acknowledgements

This work was supported by Grants from The Thailand Research Fund for Research Team Association Grant RTA5880006, and Center of Excellence for Renewable Energy, Chiang Mai University, Thailand. We thank Dr. Eric H. C. McKenzie for improving the English text.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

References

  1. Aoki T, O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the Group 1 population of F. graminearum. Mycologia 91:597–609CrossRefGoogle Scholar
  2. Aveskamp MM, de Gruyter J, Woudenberg JHC, Verkley GJM, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60CrossRefGoogle Scholar
  3. Booth C (ed) (1971) The genus Fusarium. CMI, KewGoogle Scholar
  4. Chehri K, Salleh B, Yli-Mattila T, Reddy KRN, Abbasi S (2011) Molecular characterization of pathogenic Fusarium species in cucurbit plants from Kermanshah province, Iran. Saudi J Biol Sci 18:341–351CrossRefGoogle Scholar
  5. de Oliveira MJ, Laranjeira D, Câmara MPS, Laranjeira FF, Armengol J, Michereff SJ (2014) Effects of wounding, humidity, temperature, and inoculum concentrations on the severity of corky dry rot caused by Fusarium semitectum in melon fruits. Acta Sci Agron 36:281–289CrossRefGoogle Scholar
  6. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  7. Felsenstein J (1985) Confidence limits on phylogenetics: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  8. George RAT, Fox RTV (eds) (2014) Diseases of temperate horticultural plants. CABI, WallingfordGoogle Scholar
  9. Ghuffar S, Irshad G, Naz F, Rosli HB, Hyder S, Mehmood N, Zeshan MA, Mayer CG, Gleason ML (2018) First report of two Penicillium spp. causing postharvest fruit rot of grapes in Pakistan. Plant Dis 102:1037CrossRefGoogle Scholar
  10. Keinath P (1996) Spread of Didymella bryoniae from contaminated watermelon seed and transplants in greenhouse and field environments. In: Pandalai SG (ed) Recent research developments in plant pathology. Research Signpost, Trivandrum, pp 65–72Google Scholar
  11. Keinath AP (2011) From native plants in Central Europe to cultivated crops worldwide: the emergence of Didymella bryoniae as a cucurbit pathogen. HortScience 46:532–535Google Scholar
  12. Kim JW, Kim HJ (2004) Fusarium fruit rot of posthavest oriental melon (Cucumis melo L. var. makuwa Mak.) caused by Fusarium spp (in Korean with English summary). Res Plant Dis 10:260–267CrossRefGoogle Scholar
  13. Leslie JF, Summerell BA (eds) (2006) The Fusarium laboratory manual. Blackwell, AmesGoogle Scholar
  14. Lester GE, Hodges DM (2008) Antioxidants associated with fruit senescence and human health: Novel orange-fleshed non-netted honey dew melon genotype comparisons following different seasonal productions and cold storage durations. Postharvest Biol Technol 48:347–354CrossRefGoogle Scholar
  15. Li PF, Ren RS, Yao XF, Xu JH, Babu B, Paret ML, Yang XP (2015) Identification and characterization of the causal agent of gummy stem blight from muskmelon and watermelon in East China. J Phytopathol 163:314–319CrossRefGoogle Scholar
  16. Lombard L, van der Merwe NA, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245CrossRefGoogle Scholar
  17. Marín P, Moretti A, Ritieni A, Jurado M, Vázquez C, González-Jaén MT (2012) Phylogenetic analyses and toxigenic profiles of Fusarium equiseti and Fusarium acuminatum isolated from cereals from southern Europe. Food Microbiol 31:229–237CrossRefGoogle Scholar
  18. Nuangmek W, Aiduang W, Suwannarach N, Kumla J, Lumyong S (2018) First report of gummy stem blight caused by Stagonosporopsis cucurbitacearum on cantaloupe in Thailand. Can J Plant Pathol 40:306–311CrossRefGoogle Scholar
  19. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116CrossRefGoogle Scholar
  20. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95:2044–2049CrossRefGoogle Scholar
  21. Parle M, Singh K (2011) Musk melon is eat-must melon. Inter Res J Pharm 2:52–57Google Scholar
  22. Proctor RH, McCormick SP, Alexander NJ, Desjardins AE (2009) Evidence that a secondary metabolic biosynthetic gene cluster has grown by gene relocation during evolution of the filamentous fungus Fusarium. Mol Microbiol 74:1128–1142CrossRefGoogle Scholar
  23. Pscheidt JW, Ocamb CM (2018) Pacific Northwest plant disease management handbook. Oregon State University, CorvallisGoogle Scholar
  24. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  25. Schroers HJ, O’Donnell K, Lamprecht S, Kammeyer PL, Johnson S, Sutton DA, Rinaldi MG, Geiser DM, Summerbell RC (2009) Taxonomy and phylogeny of the Fusarium dimerum species group. Mycologia 101:44–70CrossRefGoogle Scholar
  26. Snowdon AL (1990) A colour atlas of post-harvest diseases and disorders of fruit and vegetables: general introduction and fruits, vol 1. Wolfe Scientific, LondonGoogle Scholar
  27. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefGoogle Scholar
  28. Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Tóth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204CrossRefGoogle Scholar
  29. Stewart JE, Turner AN, Brewer MT (2015) Evolutionary history and variation in host range of three Stagonosporopsis species causing gummy stem blight of cucurbits. Fungal Biol 119:370–382CrossRefGoogle Scholar
  30. Waalwijk C, de Koning JRA, Baayen RP, Gams W (1996) Discordant groupings of Fusarium spp. from sections Elegans, Liseola and Dlaminia based on ribosomal ITS1 and ITS2 sequences. Mycologia 88:361–368CrossRefGoogle Scholar
  31. Walder F, Schlaeppi K, Wittwer R, Held AY, Vogelgsang S, van der Heijden MGA (2017) Community profiling of Fusarium in combination with other plant-associated fungi in different crop species using SMRT sequencing. Front Plant Sci 8:2019CrossRefGoogle Scholar
  32. Waraitch KS, Nandpuri KS (1975) Fusarium fruit rot of muskmelon (Cucumis melo L.). J Res Punjab Agric Univ 12:131–134Google Scholar
  33. White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Wipornpan Nuangmek
    • 1
    Email author
  • Worawoot Aiduang
    • 1
  • Nakarin Suwannarach
    • 2
  • Jaturong Kumla
    • 2
  • Tanongkiat Kiatsiriroat
    • 3
  • Saisamorn Lumyong
    • 2
    • 3
    • 4
  1. 1.Faculty of Agriculture and Natural ResourcesUniversity of PhayaoPhayaoThailand
  2. 2.Department of Biology, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  3. 3.Center of Excellence for Renewable EnergyChiang Mai UniversityChiang MaiThailand
  4. 4.Academy of ScienceThe Royal Society of ThailandBangkokThailand

Personalised recommendations