Journal of General Plant Pathology

, Volume 85, Issue 1, pp 1–11 | Cite as

MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1

  • Yoshitake DesakiEmail author
  • Masaki Kohari
  • Naoto Shibuya
  • Hanae KakuEmail author


Lysin motif (LysM) receptor-like proteins/kinases (LysM-RLPs/RLKs) are well known to play an important role in the induction of defense or symbiosis signaling through the recognition of carbohydrate ligands in plants. Chitin elicitor receptor kinase 1 (CERK1) is the receptor-like kinase (RLK) essential for chitin-induced defense signaling in Arabidopsis and rice. At/OsCERK1 is also known to be important for peptidoglycan (PGN)-induced defense signaling. To induce chitin and PGN responses, CERK1 forms a receptor complex with corresponding LysM-type receptors such as CEBiP, LYM1/3 or LYP4/6. Furthermore, OsCERK1 in rice also plays a key role in lipopolysaccharide (LPS) signaling, and AtCERK1 in Arabidopsis is involved in unbranched β-glucan signaling. In any case, CERK1 plays a crucial role in the activation of defense signaling by these ligands and is an essential hub-RLK/co-receptor in these systems. After chitin perception, autophosphorylation of the CERK1 kinase domain is essential for inducing immune signaling, and some functionally important phosphorylation sites have been identified. In addition, several CERK1-interacting proteins and their contribution to the downstream signaling have been reported. In particular, phosphorylation of receptor-like cytoplasmic kinases (RLCKs) by CERK1 is important for the activation of chitin signaling. These findings have contributed to our understanding of the early steps of chitin signaling. This review focuses on current knowledge about CERK1-mediated receptor complex formation and subsequent intracellular signaling.


CERK1 CEBiP Lysin motif (LysM) Chitin Receptor-like cytoplasmic kinase (RLCK) Plant U-box protein (PUB) 



This article was supported by Grants-in-Aid for Young Scientists to Y.D. (no. 17K15231), Grants-in-Aid for Scientific Research to H.K. (no. 18H02208) and MEXT-Supported Program for the Strategic Research Foundation at Private Universities 2014–2018 (S1411023) from MEXT, Japan to H.K.

Compliance with ethical standards

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Akamatsu A, Wong HL, Fujiwara M, Okuda J, Nishide K, Uno K, Imai K, Umemura K, Kawasaki T, Kawano Y, Shimamoto K (2013) An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity. Cell Host Microbe 13:465–476CrossRefGoogle Scholar
  2. Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H, Krol E, Grefen C, Gust AA, Chai J, Hedrich R, Van den Ackerveken G, Nürnberger T (2015) An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nat Plants 1:15140CrossRefGoogle Scholar
  3. Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke FLH, Chen S, Zhou JM (2018) Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis. Plant Cell 30:1543–1561Google Scholar
  4. Böhm H, Albert I, Oome S, Raaymakers TM, Van den Ackerveken G, Nürnberger T (2014) A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis. PLoS Pathog 10:e1004491CrossRefGoogle Scholar
  5. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406CrossRefGoogle Scholar
  6. Boutrot F, Zipfel C (2017) Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55:257–286CrossRefGoogle Scholar
  7. Bressendorff S, Azevedo R, Kenchappa CS, de Leon IP, Olsen JV, Rasmussen MW, Erbs G, Newman MA, Petersen M, Mundy J (2016) An innate immunity pathway in the moss Physcomitrella patens. Plant Cell 28:1328–1342CrossRefGoogle Scholar
  8. Cai RM, Lewis J, Yan SC, Liu HJ, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman S, Vinatzer BA (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7:e1002130CrossRefGoogle Scholar
  9. Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLIFE 3:e03766CrossRefGoogle Scholar
  10. Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Jones JDG, Felix G, Boller T (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497–500CrossRefGoogle Scholar
  11. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537–552CrossRefGoogle Scholar
  12. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955CrossRefGoogle Scholar
  13. Desaki Y, Miyata K, Suzuki M, Shibuya N, Kaku H (2018a) Plant immunity and symbiosis signaling mediated by LysM receptors. Innate Immun 24:92–100CrossRefGoogle Scholar
  14. Desaki Y, Kouzai Y, Ninomiya Y, Iwase R, Shimizu Y, Seko K, Molinaro A, Minami E, Shibuya N, Kaku H, Nishizawa Y (2018b) OsCERK1 plays a crucial role in the lipopolysaccharide-induced immune response of rice. New Phytol 217:1042–1049CrossRefGoogle Scholar
  15. Erwig J (2016) Analysis of the subcellular behavior of Arabidopsis thaliana LysM-proteins and their role in plant innate immunity. PhD Thesis Georg-August-Universität Göettingen, Germany.
  16. Erwig J, Ghareeb H, Kopischke M, Hacke R, Matei A, Petutschnig E, Lipka V (2017) Chitin-induced and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) phosphorylation-dependent endocytosis of Arabidopsis thaliana LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE5 (LYK5). New Phytol 215:382–396CrossRefGoogle Scholar
  17. Faulkner C, Petutschnig E, Benitez-Alfonso Y, Beck M, Robatzek S, Lipka V, Maule AJ (2013) LYM2-dependent chitin perception limits molecular flux via plasmodesmata. Proc Natl Acad Sci USA 110:9166–9170CrossRefGoogle Scholar
  18. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276CrossRefGoogle Scholar
  19. Fesel PH, Zuccaro A (2016) β-glucan: crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genet Biol 90:53–60CrossRefGoogle Scholar
  20. Furukawa T, Inagaki H, Takai R, Hirai H, Che FS (2014) Two distinct EF-Tu epitopes induce immune responses in rice and Arabidopsis. Mol Plant Microbe Interact 27:113–124CrossRefGoogle Scholar
  21. Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67:1800–1807CrossRefGoogle Scholar
  22. Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19:423–429CrossRefGoogle Scholar
  23. Gómez-Gómez L, Boller T (2000) FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011CrossRefGoogle Scholar
  24. Gong BQ, Xue J, Zhang N, Xu L, Yao X, Yang QJ, Yu Y, Wang HB, Zhang D, Li JF (2017) Rice chitin receptor OsCEBiP Is not a transmembrane protein but targets the plasma membrane via a GPI anchor. Mol Plant 10:767–770CrossRefGoogle Scholar
  25. Gu ZH, Liu TL, Ding B, Li FF, Wang Q, Qian SS, Ye F, Chen TZ, Yang YW, Wang JY, Wang GL, Zhang BL, Zhou XP (2017) Two lysin-motif receptor kinases, Gh-LYK1 and Gh-LYK2, contribute to resistance against Verticillium wilt in upland cotton. Front Plant Sci 8:2133CrossRefGoogle Scholar
  26. Gubaeva E, Gubaev A, Melcher RLJ, Cord-Landwehr S, Singh R, El Gueddari NE, Moerschbacher BM (2018) ‘Slipped sandwich’ model for chitin and chitosan perception in Arabidopsis. Mol Plant Microbe Interact 31:1145–1153CrossRefGoogle Scholar
  27. Gust AA, Brunner F, Nürnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol 21:204–210CrossRefGoogle Scholar
  28. Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N (2014) Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci USA 111:E404–E413CrossRefGoogle Scholar
  29. Heese A, Hann DR, Gimenez-Ibanez S, Jones AME, He K, Li J, Schroeder JI, Peck SC, Rathjen JP (2007) The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc Natl Acad Sci USA 104:12217–12222CrossRefGoogle Scholar
  30. Hind SR, Strickler SR, Boyle PC, Dunham DM, Bao ZL, O’Doherty IM, Baccile JA, Hoki JS, Viox EG, Clarke CR, Vinatzer BA, Schroeder FC, Martin GB (2016) Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat Plants 2:16128CrossRefGoogle Scholar
  31. Jehle AK, Lipschis M, Albert M, Fallahzadeh-Mamaghani V, Furst U, Mueller K, Felix G (2013) The receptor-like protein ReMAX of Arabidopsis detects the microbe-associated molecular pattern eMax from Xanthomonas. Plant Cell 25:2330–2340CrossRefGoogle Scholar
  32. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefGoogle Scholar
  33. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091CrossRefGoogle Scholar
  34. Katsuragi Y, Takai R, Furukawa T, Hirai H, Morimoto T, Katayama T, Murakami T, Che FS (2015) CD2-1, the C-terminal region of flagellin, modulates the induction of immune responses in rice. Mol Plant Microbe Intract 28:648–658CrossRefGoogle Scholar
  35. Kishimoto K, Kouzai Y, Kaku H, Shibuya N, Minami E, Nishizawa Y (2010) Perception of the chitin oligosaccharides contributes to disease resistance to blast fungus Magnaporthe oryzae in rice. Plant J 64:343–354CrossRefGoogle Scholar
  36. Kouzai Y, Mochizuki S, Nakajima K, Desaki Y, Hayafune M, Miyazaki H, Yokotani N, Ozawa K, Minami E, Kaku H, Shibuya N, Nishizawa Y (2014) Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice. Mol Plant Microbe Interact 27:975–982CrossRefGoogle Scholar
  37. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507CrossRefGoogle Scholar
  38. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B, Jones JD, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369CrossRefGoogle Scholar
  39. Lee WS, Rudd JJ, Hammond-Kosack KE, Kanyuka K (2014) Mycosphaerella graminicola LysM effector-mediated stealth pathogenesis subverts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant Microbe Intract 27:236–243CrossRefGoogle Scholar
  40. Leppyanen IV, Shakhnazarova VY, Shtark OY, Vishnevskaya NA, Tikhonovich IA, Dolgikh EA (2018) Receptor-like kinase LYK9 in Pisum sativum L. is the CERK1-like receptor that controls both plant immunity and AM symbiosis development. Int J Mol Sci 19:E8CrossRefGoogle Scholar
  41. Li D, Wang L, Wang M, Xu YY, Luo W, Liu YJ, Xu ZH, Li J, Chong K (2009) Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J 7:791–806CrossRefGoogle Scholar
  42. Liang X, Ma M, Zhou Z, Wang J, Yang X, Rao S, Bi G, Li L, Zhang X, Chai J, Chen S, Zhou JM (2018) Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Res 28:529–543CrossRefGoogle Scholar
  43. Liao D, Cao Y, Sun X, Espinoza C, Nguyen CT, Liang Y, Stacey G (2017) Arabidopsis E3 ubiquitin ligase PLANT U-BOX13 (PUB13) regulates chitin receptor LYSIN MOTIF RECEPTOR KINASE5 (LYK5) protein abundance. New Phytol 214:1646–1656CrossRefGoogle Scholar
  44. Liao DH, Sun X, Wang N, Song FM, Liang Y (2018) Tomato LysM receptor-like kinase SlLYK12 is involved in arbuscular mycorrhizal symbiosis. Front Plant Sci 9:1004CrossRefGoogle Scholar
  45. Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K, He Y, Wang J, Wang HB (2012a) Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell 24:3406–3419CrossRefGoogle Scholar
  46. Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J, Zhou JM, Chai J (2012b) Chitin-induced dimerization activates a plant immune receptor. Science 336:1160–1164CrossRefGoogle Scholar
  47. Liu S, Wang J, Han Z, Gong X, Zhang H, Chai J (2016) Molecular mechanism for fungal cell wall recognition by rice chitin receptor OsCEBiP. Structure 24:1192–1200CrossRefGoogle Scholar
  48. Liu J, Liu B, Chen S, Gong BQ, Chen L, Zhou Q, Xiong F, Wang M, Feng D, Li JF, Wang HB, Wang J (2018) A tyrosine phosphorylation cycle regulates fungal activation of a plant receptor Ser/Thr kinase. Cell Host Microbe 23:241–253CrossRefGoogle Scholar
  49. Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci USA 107:496–501CrossRefGoogle Scholar
  50. Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne TP, He P, Shan L (2011) Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332:1439–1442CrossRefGoogle Scholar
  51. Lv ZY, Huang Y, Ma B, Xiang ZH, He NJ (2018) LysM1 in MmLYK2 is a motif required for the interaction of MmLYP1 and MmLYK2 in the chitin signaling. Plant Cell Rep 37:1101–1112CrossRefGoogle Scholar
  52. Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, Muñoz-Barrios A, Pacios LF, Molina A (2018) Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J 93:34–49CrossRefGoogle Scholar
  53. Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BP, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335CrossRefGoogle Scholar
  54. Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618CrossRefGoogle Scholar
  55. Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K, Asamizu E, Okabe Y, Umehara Y, Miyamoto A, Kobae Y, Akiyama K, Kaku H, Nishizawa Y, Shibuya N, Nakagawa T (2014) The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol 55:1864–1872CrossRefGoogle Scholar
  56. Mott GA, Thakur S, Smakowska E, Wang PW, Belkhadir Y, Desveaux D, Guttman DS (2016) Genomic screens identify a new phytobacterial microbe-associated molecular pattern and the cognate Arabidopsis receptor-like kinase that mediates its immune elicitation. Genome Biol 17:98CrossRefGoogle Scholar
  57. Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M, Takanashi K, Yazaki K, Aoki T, Shibuya N, Kouchi H (2011) From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. Plant J 65:169–180CrossRefGoogle Scholar
  58. Narusaka Y, Shinya T, Narusaka M, Motoyama N, Shimada H, Murakami K, Shibuya N (2013) Presence of LYM2 dependent but CERK1 independent disease resistance in Arabidopsis. Plant Signal Behav 8:e25345CrossRefGoogle Scholar
  59. Oome S, Raaymakers TM, Cabral A, Samwel S, Bohm H, Albert I, Nürnberger T, Van den Ackerveken G (2014) Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis. Proc Natl Acad Sci USA 111:16955–16960CrossRefGoogle Scholar
  60. Perraki A, DeFalco TA, Derbyshire P, Avila J, Séré D, Sklenar J, Qi X, Stransfeld L, Schwessinger B, Kadota Y, Macho AP, Jiang S, Couto D, Torii KU, Menke FLH, Zipfel C (2018) Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature 561:248–252CrossRefGoogle Scholar
  61. Petutschnig EK, Jones AM, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911CrossRefGoogle Scholar
  62. Pruitt RN, Schwessinger B, Joe A, Thomas N, Liu F, Albert M, Robinson MR, Chan LJG, Luu DD, Chen H, Bahar O, Daudi A, De Vleesschauwer D, Caddell D, Zhang WG, Zhao XX, Li X, Heazlewood JL, Ruan D, Majumder D, Chern M, Kalbacher H, Midha S, Patil PB, Sonti RV, Petzold CJ, Liu CC, Brodbelt JS, Felix G, Ronald PC (2015) The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1:e1500245CrossRefGoogle Scholar
  63. Ranf S (2017) Sensing of molecular patterns through cell surface immune receptors. Curr Opin Plant Biol 38:68–77CrossRefGoogle Scholar
  64. Ranf S, Gisch N, Schäffer M, Illig T, Westphal L, Knirel YA, Sánchez-Carballo PM, Zähringer U, Huckelhoven R, Lee J, Scheel D (2015) A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16:426–433CrossRefGoogle Scholar
  65. Rao S, Zhou Z, Miao P, Bi G, Hu M, Wu Y, Feng F, Zhang X, Zhou JM (2018) Roles of receptor-like cytoplasmic kinase VII Members in pattern-triggered immune signaling. Plant Physiol 177:1679–1690Google Scholar
  66. Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615CrossRefGoogle Scholar
  67. Saijo Y, Loo EP, Yasuda S (2018) Pattern recognition receptors and signaling in plant–microbe interactions. Plant J 93:592–613CrossRefGoogle Scholar
  68. Saur IML, Kadota Y, Sklenar J, Holton NJ, Smakowska E, Belkhadir Y, Zipfel C, Rathjen JP (2016) NbCSPR underlies age-dependent immune responses to bacterial cold shock protein in Nicotiana benthamiana. Proc Natl Acad Sci USA 113:3389–3394CrossRefGoogle Scholar
  69. Schoonbeek HJ, Wang HH, Stefanato FL, Craze M, Bowden S, Wallington E, Zipfel C, Ridout CJ (2015) Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytol 206:606–613CrossRefGoogle Scholar
  70. Sharp JK, Mcneil M, Albersheim P (1984) The primary structures of one elicitor-active and seven elicitor-inactive hexa(β-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem 259:11321–11336Google Scholar
  71. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214CrossRefGoogle Scholar
  72. Shinya T, Motoyama N, Ikeda A, Wada M, Kamiya K, Hayafune M, Kaku H, Shibuya N (2012) Functional characterization of CEBiP and CERK1 homologs in Arabidopsis and rice reveals the presence of different chitin receptor systems in plants. Plant Cell Physiol 53:1696–1706CrossRefGoogle Scholar
  73. Shinya T, Yamaguchi K, Desaki Y, Yamada K, Narisawa T, Kobayashi Y, Maeda K, Suzuki M, Tanimoto T, Takeda J, Nakashima M, Funama R, Narusaka M, Narusaka Y, Kaku H, Kawasaki T, Shibuya N (2014) Selective regulation of the chitin-induced defense response by the Arabidopsis receptor-like cytoplasmic kinase PBL27. Plant J 79:56–66CrossRefGoogle Scholar
  74. Shinya T, Nakagawa T, Kaku H, Shibuya N (2015) Chitin-mediated plant–fungal interactions: catching, hiding and handshaking. Curr Opin Plant Biol 26:64–71CrossRefGoogle Scholar
  75. Suzuki M, Shibuya M, Shimada H, Motoyama N, Nakashima M, Takahashi S, Suto K, Yoshida I, Matsui S, Tsujimoto N, Ohnishi M, Ishibashi Y, Fujimoto Z, Desaki Y, Kaku H, Kito K, Shibuya N (2016) Autophosphorylation of specific threonine and tyrosine residues in Arabidopsis CERK1 is essential for the activation of chitin-induced immune signaling. Plant Cell Physiol 57:2312–2322CrossRefGoogle Scholar
  76. Suzuki M, Watanabe T, Yoshida I, Kaku H, Shibuya N (2018) Autophosphorylation site Y428 is essential for the in vivo activation of CERK1. Plant Signal Behav 13:e1435228CrossRefGoogle Scholar
  77. Takai R, Isogai A, Takayama S, Che FS (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Intract 21:1635–1642CrossRefGoogle Scholar
  78. Takemoto D, Hardham AR, Jones DA (2005) Differences in cell death induction by Phytophthora elicitins are determined by signal components downstream of MAP kinase kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus. Plant Physiol 138:1491–1504CrossRefGoogle Scholar
  79. Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI–ETI dichotomy. Plant Cell 23:4–15CrossRefGoogle Scholar
  80. van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19:1420–1430CrossRefGoogle Scholar
  81. Wang L, Albert M, Einig E, Fürst U, Krust D, Felix G (2016) The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein. Nat Plants 2:16185CrossRefGoogle Scholar
  82. Wang C, Wang G, Zhang C, Zhu P, Dai H, Yu N, He Z, Xu L, Wang E (2017) OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice. Mol Plant 10:619–633CrossRefGoogle Scholar
  83. Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono JJ, Cullimore JV, Jehle AK, Götz F, Kulik A, Molinaro A, Lipka V, Gust AA, Nürnberger T (2011) Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci USA 108:19824–19829CrossRefGoogle Scholar
  84. Xu J, Wang GL, Wang J, Li YQ, Tian LL, Wang XY, Guo WZ (2017) The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC Plant Biol 17:148CrossRefGoogle Scholar
  85. Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Induction of phytoalexin formation in suspension-cultured rice cells by N-acetyl-chitooligosaccharides. Biosci Biotechnol Biochem 57:405–409CrossRefGoogle Scholar
  86. Yamada K, Yamaguchi K, Shirakawa T, Nakagami H, Mine A, Ishikawa K, Fujiwara M, Narusaka M, Narusaka Y, Ichimura K, Kobayashi Y, Matsui H, Nomura Y, Nomoto M, Tada Y, Fukao Y, Fukamizo T, Tsuda K, Shirasu K, Shibuya N, Kawasaki T (2016) The Arabidopsis CERK1-associated kinase PBL27 connects chitin perception to MAPK activation. EMBO J 35:2468–2483CrossRefGoogle Scholar
  87. Yamada K, Yamaguchi K, Yoshimura S, Terauchi A, Kawasaki T (2017) Conservation of chitin-induced MAPK signaling pathways in rice and Arabidopsis. Plant Cell Physiol 58:993–1002CrossRefGoogle Scholar
  88. Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N (2000) Differences in the recognition of glucan elicitor signals between rice and soybean: β-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12:817–826Google Scholar
  89. Yamaguchi K, Yamada K, Ishikawa K, Yoshimura S, Hayashi N, Uchihashi K, Ishihama N, Kishi-Kaboshi M, Takahashi A, Tsuge S, Ochiai H, Tada Y, Shimamoto K, Yoshioka H, Kawasaki T (2013) A receptor-like cytoplasmic kinase targeted by a plant pathogen effector is directly phosphorylated by the chitin receptor and mediates rice immunity. Cell Host Microbe 13:347–357CrossRefGoogle Scholar
  90. Yamaguchi K, Mezaki H, Fujiwara M, Hara Y, Kawasaki T (2017) Arabidopsis ubiquitin ligase PUB12 interacts with and negatively regulates Chitin Elicitor Receptor Kinase 1 (CERK1). PLoS One 12:e0188886CrossRefGoogle Scholar
  91. Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou JM (2010) Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7:290–301CrossRefGoogle Scholar
  92. Zhang WG, Fraiture M, Kolb D, Loffelhardt B, Desaki Y, Boutrot FFG, Tör M, Zipfel C, Gust AA, Brunner F (2013) Arabidopsis RECEPTOR-LIKE PROTEIN30 and receptor-like kinase SUPPRESSOR OF BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. Plant Cell 25:4227–4241CrossRefGoogle Scholar
  93. Zhang LS, Kars I, Essenstam B, Liebrand TWH, Wagemakers L, Elberse J, Tagkalaki P, Tjoitang D, van den Ackerveken G, van Kan JAL (2014) Fungal endopolygalacturonases are recognized as microbe-associated molecular patterns by the Arabidopsis receptor-like protein RESPONSIVENESS TO BOTRYTIS POLYGALACTURONASES1. Plant Physiol 164:352–364CrossRefGoogle Scholar
  94. Zhou Z, Tian Y, Cong PH, Zhu YM (2018) Functional characterization of an apple (Malus × domestica) LysM domain receptor encoding gene for its role in defense response. Plant Sci 269:56–65CrossRefGoogle Scholar
  95. Zipfel C, Oldroyd GE (2017) Plant signalling in symbiosis and immunity. Nature 543:328–336CrossRefGoogle Scholar
  96. Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JDG, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760CrossRefGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological Science and Technology, Faculty of Industrial Science and TechnologyTokyo University of ScienceTokyoJapan
  2. 2.Department of Life Sciences, School of AgricultureMeiji UniversityKanagawaJapan

Personalised recommendations