Journal of General Plant Pathology

, Volume 85, Issue 1, pp 72–78 | Cite as

Detection of Pythium porphyrae infecting Philippine Pyropia acanthophora based on morphology and nuclear rRNA internal transcribed spacer sequences

  • Richard V. DumilagEmail author
Disease Note


Outbreaks of Pythium porphyrae, a fungus that causes red rot disease can devastate nori production, but studies have focused on the occurrence of P. porphyrae from cultivated hosts compared with the wild ones. An unexpected encounter of P. porphyrae infecting the wild nori seaweed, Pyropia acanthophora, collected from the Philippines prompted the present study. The definitive morphological diagnoses of P. porphyrae infection based from the previous reports were similar to those obtained here. Phylogenetic and haplotype analyses of nuclear rRNA internal transcribed spacer sequences confirmed that the pathogen infecting the Philippine Py. acanthophora can be assigned to P. porphyrae.


Fungal pathogen Nori Nuclear rRNA ITS Pythium porphyrae Pyropia acanthophora 



I thank Z. Aguinaldo for field and laboratory assistance. R. Andres, C. Abiva, and C. Ame of the BFAR-RO2 organized the collection trip in Claveria, Cagayan. The comments from two anonymous reviewers are greatly acknowledged. Additional comments and edits from B. E. Hazen greatly improved the quality of the manuscript. Support was provided by the Far Eastern University, University Research Center (FEU-URC) and by a grant from the Philippine Council for Agriculture, Aquatic and Natural Resources Research and Development (DOST-PCAARRD) Science Education Institute through an Accelerated Science and Technology Human Resources Development Program (DOST-SEI ASTHRDP).

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by the author.


  1. Alcala AVC, Paulitz TC, Schroeder KL, Porter LD, Derie ML, du Toit LJ (2016) Pythium species associated with damping-off of pea in certified organic fields in the Columbia Basin of central Washington. Plant Dis 100:916–925CrossRefGoogle Scholar
  2. Amano H, Sakaguchi K, Maegawa M, Noda H (1996) The use of a monoclonal antibody for the detection of fungal parasite, Pythium sp., the causative organism of red rot disease, in seawater from Porphyra cultivation farms. Fish Sci 62:556–560CrossRefGoogle Scholar
  3. Ame EC, Ayson JP, Okuda K, Andres R (2010) Porphyra fisheries in the northern Philippines: some environmental issues and the socio-economic impact on the Ilocano fisherfolk. Kuroshio Sci 4:53–58Google Scholar
  4. Arasaki S (1947) Studies on the wasting disease of the cultured lavers (Porphyra tenera) (in Japanese). Bull Jpn Soc Sci Fish 13:74–90CrossRefGoogle Scholar
  5. Bolboli Z, Mostowfizadeh-Ghalamfarsa R (2015) Phylogenetic relationships and taxonomic characteristics of Pythium spp. isolates in cereal fields of Fars Province. Iran J Plant Pathol 51:471–492Google Scholar
  6. Carney LT, Lane TW (2014) Parasites in algae mass culture. Front Microbiol 5:278. CrossRefGoogle Scholar
  7. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  8. Crocker EV, Karp MA, Nelson EB (2015) Virulence of oomycete pathogens from Phragmites australis-invaded and noninvaded soils to seedlings of wetland plant species. Ecol Evol 5:2127–2139CrossRefGoogle Scholar
  9. De Cock AWAM (1986) Marine Pythiaceae from decaying seaweeds in the Netherlands. Mycotaxon 25:101–110Google Scholar
  10. Diehl N, Kim GH, Zuccarello GC (2017) A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota). Algae 32:29–39CrossRefGoogle Scholar
  11. Ding H, Ma J (2005) Simultaneous infection by red rot and chytrid diseases in Porphyra yezoensis Ueda. J Appl Phycol 17:51–56CrossRefGoogle Scholar
  12. Dumilag RV, Aguinaldo ZA (2017) Genetic differentiation and distribution of Pyropia acanthophora (Bangiales, Rhodophyta) in the Philippines. Eur J Phycol 52:104–115CrossRefGoogle Scholar
  13. Gachon CMM, Sime-Ngando T, Strittmatter M, Chambouvet A, Kim GH (2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15:633–640CrossRefGoogle Scholar
  14. Goedknegt MA, Feis ME, Mathias Wegner K, Luttikhuizen PC, Buschbaum C, Camphuysen KC, der Meer J, Thieltges DW (2016) Parasites and marine invasions: ecological and evolutionary perspectives. J Sea Res 113:11–27CrossRefGoogle Scholar
  15. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, Vasta GR (1999) Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–1510CrossRefGoogle Scholar
  16. Jiang YN, Haudenshield JS, Hartman GL (2012) Characterization of Pythium spp. from soil samples in Illinois. Can J Plant Pathol 34:448–454CrossRefGoogle Scholar
  17. Jones LA, Worobo RW, Smart CD (2014) Plant-pathogenic oomycetes, Escherichia coli strains, and Salmonella spp. frequently found in surface water used for irrigation of fruit and vegetable crops in New York State. Appl Environ Microbiol 80:4814–4820CrossRefGoogle Scholar
  18. Kammarnjesadakul P, Palaga T, Sritunyalucksana K, Mendoza L, Krajaenjun T, Vanittanakom N, Tongchusak S, Denduangboripant J, Chindamporn A (2011) Phylogenetic analysis of Pythium insidiosum Thai strains using cytochrome oxidase II (COX II) DNA coding sequences and internal transcribed spacer regions (ITS). Med Mycol 49:289–295CrossRefGoogle Scholar
  19. Kawamura Y, Yokoo K, Tojo M, Hishiike M (2005) Distribution of Pythium porphyrae, the causal agent of red rot disease of Porphyrae spp., in the Ariake Sea, Japan. Plant Dis 89:1041–1047CrossRefGoogle Scholar
  20. Klochkova TA, Shin YJ, Moon KH, Motomura T, Kim GH (2016) New species of unicellular obligate parasite, Olpidiopsis pyropiae sp. nov., that plagues Pyropia sea farms in Korea. J Appl Phycol 28:73–83CrossRefGoogle Scholar
  21. Klochkova TA, Jung S, Kim GH (2017) Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J Appl Phycol 29:371–379CrossRefGoogle Scholar
  22. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  23. Kwak MS, Klochkova TA, Jeong S, Kim GH (2017) Olpidiopsis porphyrae var. koreanae, an endemic endoparasite infecting cultivated Pyropia yezoensis in Korea. J Appl Phycol 29:2003–2012CrossRefGoogle Scholar
  24. Lee SJ, Hwang MS, Park MA, Baek JM, Ha DS, Lee JE, Lee SR (2015) Molecular identification of the algal pathogen Pythium chondricola (oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers. Algae 30:217–222CrossRefGoogle Scholar
  25. Lévesque CA, De Cock AWAM (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108:1363–1383CrossRefGoogle Scholar
  26. Lodhi AM, Shahzad S, Ghaffar A (2004) Re-description of Pythium adhaerens Sparrow. Pak J Bot 36:453–456Google Scholar
  27. Loureiro R, Gachon CMM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:489–492CrossRefGoogle Scholar
  28. Lymbery AJ, Morine M, Kanani HG, Beatty SJ, Morgan DL (2014) Co-invaders: the effects of alien parasites on native hosts. Int J Parasitol Parasites Wildl 3:171–177CrossRefGoogle Scholar
  29. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshops (GCE). New Orleans, pp 1–8Google Scholar
  30. Milstein D, Madeiros AS, Oliveira EC, Oliveira MC (2015) Native or introduced? A re-evaluation of Pyropia species (Bangiales, Rhodophyta) from Brazil based on molecular analyses. Eur J Phycol 50:37–45CrossRefGoogle Scholar
  31. Mo Z, Li S, Kong F, Tang X, Mao Y (2016) Characterization of a novel fungal disease that infects the gametophyte of Pyropia yezoensis (Bangiales, Rhodophyta). J Appl Phycol 28:395–404CrossRefGoogle Scholar
  32. Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey J (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67CrossRefGoogle Scholar
  33. de Oliveira Filho EC, Coll J (1975) The genus Porphyra C. Ag. (Rhodophyta-Bangiales) in the American south Atlantic. I. Brazilian species. Bot Mar 18:191–197CrossRefGoogle Scholar
  34. Park CS, Kakinuma M, Amano H (2001) Detection of the red rot disease fungi Pythium spp. by polymerase chain reaction. Fish Sci 67:197–199CrossRefGoogle Scholar
  35. Robideau GP, De Cock AWAM, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CMM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen ECP, Zhang Y, Bonants PJM, Ristaino JB, Lévesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11:1002–1011CrossRefGoogle Scholar
  36. Rojas JA, Jacobs JL, Napieralski S, Karaj B, Bradley CA, Chase T, Esker PD, Giesler LJ, Jardine DJ, Malvick DK, Markell SG, Nelson BD, Robertson AE, Rupe JC, Smith DL, Sweets LE, Tenuta AU, Wise KA, Chilvers MI (2017) Oomycete species associated with soybean seedlings in North America—part I: identification and pathogenicity characterization. Phytopathology 107:280–292CrossRefGoogle Scholar
  37. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefGoogle Scholar
  38. Salmaninezhad F, Mostowfizadeh-Ghalamfarsa R (2017) Phylogeny of Phytophthora and Phytopythium species associated with rice in Fars Province (Iran). Rostaniha 18:1–15Google Scholar
  39. Saunders GW, Moore TE (2013) Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. Algae 28:31–43CrossRefGoogle Scholar
  40. Sparrow FK Jr (1931) Two new species of Pythium parasitic in green algae. Ann Bot 45:257–277CrossRefGoogle Scholar
  41. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefGoogle Scholar
  42. Takahashi M, Ichitani T, Sasaki M (1977) Pythium porphyrae Takahashi et Sasaki, sp. nov. causing red rot of marine red algae Porphyra spp. Trans Mycol Soc Jpn 18:279–285Google Scholar
  43. Telfer S, Bown K (2012) The effects of invasion on parasite dynamics and communities. Funct Ecol 26:1288–1299CrossRefGoogle Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefGoogle Scholar
  45. Uppalapati SR, Fujita Y (2000) Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J Phycol 36:359–366CrossRefGoogle Scholar
  46. Uppalapati SR, Fujita Y (2002) Red rot of cultivated Porphyra (‘nori’) in Japan. Fish Sci 68(sup2):1319–1320CrossRefGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological Sciences, Institute of Arts and SciencesFar Eastern UniversityManilaPhilippines

Personalised recommendations