Advertisement

Journal of General Plant Pathology

, Volume 84, Issue 4, pp 300–304 | Cite as

First report of ‘Candidatus Phytoplasma pruni’ infecting cassava in Japan

  • Hiroaki Koinuma
  • Akio Miyazaki
  • Renya Wakaki
  • Yuji Fujimoto
  • Nozomu Iwabuchi
  • Takamichi Nijo
  • Yugo Kitazawa
  • Toshiro Shigaki
  • Kensaku Maejima
  • Yasuyuki Yamaji
  • Shigetou NambaEmail author
Disease Note
  • 204 Downloads

Abstract

Phytoplasmas are a threat to cassava production, but have not been found from cassava in Japan. Here, we present the discovery of phytoplasma in asymptomatic plants propagated in Japan. A 16S rRNA gene sequence analysis showed that the phytoplasma was related to ‘Candidatus Phytoplasma pruni’. Analyses based on 16S rRNA, secY, and ribosomal protein gene sequences revealed that the phytoplasma was closely related to phytoplasmas found in cassava in Latin America. Infected plants remained asymptomatic during cultivation for more than 11 months. This is the first molecular evidence of phytoplasma infection in cassava in Japan.

Keywords

Phytoplasma Candidatus Phytoplasma pruni Cassava frogskin Manihot esculenta 

Notes

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. Alvarez E, Pardo JM (2014) First report of hypovirulence between a reovirus and phytoplasma 16SrIII-L associated with frogskin disease of cassava (Manihot esculenta Crantz) (Abstract). Phytopathology 104(Supplement 3):S3.7Google Scholar
  2. Alvarez E, Mejía JF, Llano GA, Loke JB (2007) Detection and characterization of a phytoplasma associated with frog skin disease in cassava. Bull Insectol 60:273Google Scholar
  3. Alvarez E, Mejía JF, Llano GA, Loke JB, Calari A, Duduk B, Bertaccini A (2009) Characterization of a phytoplasma associated with frogskin disease in cassava. Plant Dis 93:1139–1145CrossRefGoogle Scholar
  4. Alvarez E, Llano GA, Mejía JF (2012) Cassava diseases in Latin America, Africa and Asia. In: Howeler RH (ed) The cassava handbook: a reference manual based on the Asian regional cassava training course held in Thailand. CIAT, Cali, pp 258–304Google Scholar
  5. Alvarez E, Pardo JM, Mejía JF, Bertaccini A, Thanh ND, Hoat TX (2013) Detection and identification of ‘Candidatus Phytoplasma asteris’-related phytoplasmas associated with a witches’ broom disease of cassava in Vietnam. Phytopathogen Mollic 3:77–81CrossRefGoogle Scholar
  6. Alvarez E, Pardo JM, Truke MJ (2014a) Detection and identification of ‘Candidatus Phytoplasma asteris’-related phytoplasma associated with a witches’ broom disease of cassava in Cambodia (Abstract). Phytopathology 104(Supplement 3):S3.7Google Scholar
  7. Alvarez E, Pardo JM, Dufour D, Moreno JL, Alvarez E (2014b) The metabolism of carbohydrates in roots of cassava (Manihot esculenta Crantz) infected with frogskin disease (Abstract). Phytopathology 104(Supplement 3):S3.7Google Scholar
  8. Arocha Y, Piñol B, Almeida R, Acosta K, Quiñones M, Zayas T, Varela M, Marrero Y, Boa E, Lucas JA (2009) First report of phytoplasmas affecting organoponic crops in central and eastern Cuba. Plant Pathol 58:793CrossRefGoogle Scholar
  9. Davis RI, Arocha Y, Jones P, Malau A (2005) First report of the association of phytoplasmas with plant diseases in the territory of Wallis and Futuna. Australas Plant Pathol 34:417–418CrossRefGoogle Scholar
  10. Davis RE, Zhao Y, Dally EL, Lee I-M, Jomantiene R, Douglas SM (2013) ‘Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. Int J Syst Evol Microbiol 63:766–776CrossRefPubMedGoogle Scholar
  11. de Souza AN, da Silva FN, Bedendo IP, Carvalho CM (2014) A phytoplasma belonging to a 16SrIII-A subgroup and dsRNA virus associated with cassava frogskin disease in Brazil. Plant Dis 98:771–779CrossRefGoogle Scholar
  12. Flôres D, Haas IC, Canale MC, Bedendo IP (2013) Molecular identification of a 16SrIII-B phytoplasma associated with cassava witches’ broom disease. Eur J Plant Pathol 137:237–242CrossRefGoogle Scholar
  13. Goncalves RD, Normanha ES, Boock OJ (eds) (1942) O superbrotamento ou envassouramento da mandioca (in Portuguese). Secretaria de Agricultura, Industria e Comercio, Sao PauloGoogle Scholar
  14. Jung HY, Sawayanagi T, Kakizawa S, Nishigawa H, Wei W, Oshima K, Miyata S, Ugaki M, Hibi T, Namba S (2003) ‘Candidatus Phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches’-broom disease. Int J Syst Evol Microbiol 53:1037–1041CrossRefPubMedGoogle Scholar
  15. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lee I-M, Bottner-Parker KD, Zhao Y, Davis RE, Harrison NA (2010) Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol 60:2887–2897CrossRefPubMedGoogle Scholar
  17. Lozano JC (1992) Overview of integrated control of cassava diseases. Fitopatol Bras 17:18–22Google Scholar
  18. Martini M, Lee I-M, Bottner KD, Zhao Y, Botti S, Bertaccini A, Harrison NA, Carraro L, Marcone C, Khan AJ, Osler R (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol 57:2037–2051CrossRefPubMedGoogle Scholar
  19. Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277CrossRefPubMedPubMedCentralGoogle Scholar
  20. Namba S (1996) Taxonomy of phytoplasmas (in Japanese). Plant Prot 50:152–156Google Scholar
  21. Namba S, Oyaizu H, Kato S, Iwanami S, Tsuchizaki T (1993a) Phylogenetic diversity of phytopathogenic mycoplasmalike organisms. Int J Syst Bacteriol 43:461–467CrossRefPubMedGoogle Scholar
  22. Namba S, Kato S, Iwanami S, Oyaizu H, Shiozawa H, Tsuchizaki T (1993b) Detection and differentiation of plant-pathogenic mycoplasmalike organisms using polymerase chain reaction. Phytopathology 83:786–791CrossRefGoogle Scholar
  23. Oliveira SAS, Abreu EFM, Araújo TS, Oliveira EJ, Andrade EC, Garcia JMP, Álvarez E (2014) First report of a 16SrIII-L phytoplasma associated with frogskin disease in cassava (Manihot esculenta Crantz) in Brazil. Plant Dis 98:153CrossRefGoogle Scholar
  24. Pineda B, Jayasinghe U, Lozano JC (1983) La enfermedad “cuero de sapo” en yuca (Manihot esculenta Crantz). ASIAVA 4:10–12Google Scholar
  25. Takinami Y, Maejima K, Takahashi A, Keima T, Shiraishi T, Okano Y, Komatsu K, Oshima K, Namba S (2013) First report of ‘Candidatus Phytoplasma asteris’ infecting hydrangea showing phyllody in Japan. J Gen Plant Pathol 79:209–213CrossRefGoogle Scholar
  26. Téllez LC, Pardo JM, Zacher M, Torres A, Alvarez E (2016) First report of a 16SrIII phytoplasma associated with frogskin disease in cassava (Manihot esculenta) in Paraguay. Plant Dis 100:1492CrossRefGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Hiroaki Koinuma
    • 1
  • Akio Miyazaki
    • 1
  • Renya Wakaki
    • 1
  • Yuji Fujimoto
    • 1
  • Nozomu Iwabuchi
    • 1
  • Takamichi Nijo
    • 1
  • Yugo Kitazawa
    • 1
  • Toshiro Shigaki
    • 1
  • Kensaku Maejima
    • 1
  • Yasuyuki Yamaji
    • 1
  • Shigetou Namba
    • 1
    Email author
  1. 1.Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations