Journal of General Plant Pathology

, Volume 79, Issue 1, pp 74–85 | Cite as

Diversity of soil-dwelling Trichoderma in Colombia and their potential as biocontrol agents against the phytopathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary

  • Alexander Smith
  • Camilo A. Beltrán
  • Manabu Kusunoki
  • Alba M. Cotes
  • Keiichi Motohashi
  • Takumasa Kondo
  • Michihito Deguchi
Disease Control


Twenty-one isolates of Trichoderma spp. were collected from eight states in Colombia and characterized based on the 5′ end of the translation elongation factor-1α (EF1-α1) gene and RNA polymerase II gene encoding the second largest protein subunit (RPB2) by using mixed primers. Seven species of soil-dwelling Trichoderma were found: T. atroviride, T. koningiopsis, T. asperellum, T. spirale, T. harzianum, T. brevicompactum and T. longibrachiatum. Species identifications based on the EF1-α1 gene were consistent with those obtained from the RPB2 gene. Phylogenetic analyses with high bootstrap values supported the validity of the identification of all isolates. These results suggest that using the combination of the genes EF1-α1 and RPB2 is highly reliable for molecular characterization of Trichoderma species. Trichoderma asperellum Th034, T. atroviride Th002 and T. harzianum Th203 prevented germination of more than 70 % of sclerotia of Sclerotinia sclerotiorum in bioassay tests and are promising biological control agents. No relationship between mycelium growth rate and parasitism level was found.


Trichoderma spp. EF1-α1 gene RPB2 gene Molecular phylogeny Biological control Sclerotinia sclerotiorum 



We thank Dr. Víctor Núñez, Dr. Carolina González, Mr. Jhon Pablo Vargs and various colleagues at the Biological Control Laboratory and Plant Genetics Molecular Laboratory in Corpoica for their help and kindness. M.D. is appreciative of helpful advice from Dr. Masuya Hayato of the Forestry and Forest Products Research Institute in Japan.


  1. Abdullah MT, Ali NY, Suleman P (2008) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary with Trichoderma harzianum and Bacillus amyloliquefaciens. Crop Prot 27:1354–1359CrossRefGoogle Scholar
  2. Anas O, Reeleder RD (1987) Recovery of fungi and arthropods from sclerotia of Sclerotinia sclerotiorum in Quebec muck soils. Phytopathology 77:327–331CrossRefGoogle Scholar
  3. Anas O, Reeleder RD (1988) Consumption of sclerotia of Sclerotinia sclerotiorum by larvae of Bradysia coprophila: influence of soil factors and interactions between larvae and Trichoderma viride. Soil Biol Biochem 20:619–624CrossRefGoogle Scholar
  4. Bardin SD, Huang HC (2001) Research on biology and control of Sclerotinia diseases in Canada. Can J Plant Pathol 23:88–98CrossRefGoogle Scholar
  5. Bissett J (1984) A revision of the genus Trichoderma. I. Section Longibrachiatum sect. nov. Can J Bot 62:924–931CrossRefGoogle Scholar
  6. Bissett J (1991a) A revision of the genus Trichoderma II. Infrageneric classification. Can J Bot 69:2357–2372CrossRefGoogle Scholar
  7. Bissett J (1991b) A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot 69:2373–2417CrossRefGoogle Scholar
  8. Bissett J (1991c) A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can J Bot 69:2418–2420CrossRefGoogle Scholar
  9. Castle A, Speranzini D, Rghei N, Alm G, Rinker D, Bissett J (1998) Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl Environ Microbiol 64:133–137PubMedGoogle Scholar
  10. Chaverri P, Samuels GJ (2003) Hypocrea/Trichoderma (Ascomycota, Hypocreales, Hypocreaceae): species with green ascospores. Stud Mycol 48:1–116Google Scholar
  11. Cheney SA, Lafranchi-Tristem NL, Bourges D, Canning EU (2001) Relationship of microsporidian genera, with emphasis on the polysporous genera, revealed by sequences of the largest subunit of RNA polymerase II (RPB1). J Eukaryot Microbiol 48:111–117PubMedCrossRefGoogle Scholar
  12. Dodd SL, Lieckfeldt E, Samuels GJ (2003) Hypocrea atroviride sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 95:27–40PubMedCrossRefGoogle Scholar
  13. Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 2:100–112Google Scholar
  14. Druzhinina IS, Schmoll M, Seiboth B, Kubicek CP (2006) Global carbon utilization profiles of wild-type, mutant, and transformant strains of Hypocrea jecorina. Appl Environ Microbiol 72:2126–2133PubMedCrossRefGoogle Scholar
  15. Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protect 19:709–714CrossRefGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  17. Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230CrossRefGoogle Scholar
  18. Harman GE, Chet I, Baker R (1981) Factors affecting Trichoderma hamatum applied to seeds as a biocontrol agent. Phytopathology 71:569–572CrossRefGoogle Scholar
  19. Harman GE, Howell RC, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  20. Hirt PR, Logsdon JM Jr, Healy B, Dorey MW, Doolittle WF, Embley TM (1999) Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci USA 96:580–585PubMedCrossRefGoogle Scholar
  21. Hjeljord LG, Tronsmo A (2003) Effect of germination initiation on competitive capacity of Trichoderma atroviride P1 conidia. Phytopathology 93:1593–1598PubMedCrossRefGoogle Scholar
  22. Hjeljord LG, Tronsmo A (2005) Trichoderma and Gliocladium in biological control: overview. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium vol 2, Enzymes, biological control and commercial applications. Taylor and francis, Bristol, pp 115–133Google Scholar
  23. Hoyos-Carvajal L, Duque G, Orduz PS (2008) Antagonism of Trichoderma spp. against isolates of Sclerotinia spp. and Rhizoctonia spp. in vitro. Rev Colomb Cienc Hortic 2:76–86Google Scholar
  24. Hoyos-Carvajal L, Orduz S, Bissett J (2009) Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol 46:615–631PubMedCrossRefGoogle Scholar
  25. Inbar J, Menendez A, Chet I (1996) Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biol Biochem 28:757–763CrossRefGoogle Scholar
  26. Jaklitsch WM (2009) European species of Hypocrea Part I. The green-spored species. Stud Mycol 63:1–91PubMedCrossRefGoogle Scholar
  27. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. vol III, Academic Press, New York. pp 21–132Google Scholar
  28. Karthikeyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Braz J Plant Physiol 18:367–377CrossRefGoogle Scholar
  29. Keszler A, Forgacs E, Kótai L, Vizcaino JA, Monte E, Garcia-Acha I (2000) Separation and identification of volatile components in the fermentation broth of Trichoderma atroviride by solid-phase extraction and gas chromatography-mass spectrometry. J Chromat Sci 38:421–424Google Scholar
  30. Kim TG, Knudsen GR (2008) Quantitative real-time PCR effectively detects and quantifies colonization of sclerotia of Sclerotinia sclerotiorum by Trichoderma spp. Appl Soil Ecol 40:100–108CrossRefGoogle Scholar
  31. Knudsen GR, Eschen DJ, Dandurand LM, Bin L (1991) Potential for biocontrol of Sclerotinia sclerotiorum through colonization of sclerotia by Trichoderma harzianum. Plant Dis 75:446–470CrossRefGoogle Scholar
  32. Kubicek I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol 38:310–319PubMedCrossRefGoogle Scholar
  33. Kullnig C, Mach RL, Lorito M, Kubicek CP (2000) Enzyme diffusion from Trichoderma atroviride (=T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl Environ Microb 66:2232–2234CrossRefGoogle Scholar
  34. Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microb 65:1858–1863Google Scholar
  35. Martinez D, Chapman J, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560PubMedCrossRefGoogle Scholar
  36. Menzies JG (1993) A strain of Trichoderma viride pathogenic to germinating seedlings of cucumber, pepper and tomato. Plant Pathol 42:784–791CrossRefGoogle Scholar
  37. Mittermeier R, Mittermeier C (1997) Megadiversity: Earth’s biologically wealthiest nations. CEMEX, Mexico City, p 501Google Scholar
  38. Oh SU, Lee SJ, Kim JH, Yoo ID (2000) Structural elucidation of new antibiotic peptides, atroviridins A, B and C from Trichoderma atroviride. Tetrahedron Lett 41:61–64Google Scholar
  39. Ohata K (1989) Fungus disease. In: Ohata K (ed) Rice diseases in Japan. ZenkokuNosonKyoikuKyokai, Tokyo, pp 278–280 (in japanese)Google Scholar
  40. Ospina-Giraldo MD, Royse DJ, Thon MR, Chen X, Romaine CP (1998) Phylogenetic relationships of Trichoderma harzianum causing mushroom green mold in Europe and North America to other species of Trichoderma from world-wide sources. Mycologia 90:76–81CrossRefGoogle Scholar
  41. París MA, Cotes AM, Beltrán C (2003) Selección de una cepa de Trichoderma sp. con actividad biocontroladora de Rhizoctonia solani en tubérculos de papa. Memórias XXIV Congreso Ascolfi, 23–27 June 2003, Armenia. Quindio, Colombia, p 23Google Scholar
  42. Purdy LH (1979) Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution and impact. Phytopathology 69:875–880CrossRefGoogle Scholar
  43. Rifai MA (1969) A revision of the genus Trichoderma. Mycol pap 116:1–56Google Scholar
  44. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  45. Samuels GJ, Ismaiel A, Bon MC, de Respinis S, Petrini O (2010) Trichoderma asperellum sensu lato consists of two cryptic species. Mycologia 102:944–966PubMedCrossRefGoogle Scholar
  46. Schwartz HF, Steadman JR (1978) Factors affecting Sclerotium populations and apothecium production by, Sclerotinia sclerotiorum. Phytopathology 68:383–388CrossRefGoogle Scholar
  47. Sharma K, Mishra AK, Misra RS (2009) Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficiency as biological control agents. J Phytopathol 157:51–56CrossRefGoogle Scholar
  48. Shoukouhi E, Bissett J (2008) Preferred primers for sequencing the 5′ end of the translation elongation factor 1-alpha gene (EF1-α1) and subunit 2 of the RNA polymerase B gene (RPB2). Verified Dec 13, 2010
  49. Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974CrossRefGoogle Scholar
  50. Watanabe S, Kumakura K, Kato H, Iyozumi H, Togawa M, Nagayama K (2005) Identification of Trichoderma SKT-1, a biological control agent against seedborne pathogens of rice. J Gen Plant Pathol 71:351–356CrossRefGoogle Scholar
  51. Williamson M (1992) Environmental risks from the release of genetically modified organisms (GMOs) the need for molecular ecology. Mol Ecol 1:3–8CrossRefGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan 2012

Authors and Affiliations

  • Alexander Smith
    • 1
  • Camilo A. Beltrán
    • 1
  • Manabu Kusunoki
    • 1
  • Alba M. Cotes
    • 1
  • Keiichi Motohashi
    • 2
  • Takumasa Kondo
    • 3
  • Michihito Deguchi
    • 1
    • 4
  1. 1.Biotechnology and Bioindustry CenterCorporación Colombiana de Investigación Agropecuaria (Corpoica)CundinamarcaColombia
  2. 2.Faculty of Regional Environment ScienceTokyo University of AgricultureTokyoJapan
  3. 3.Corporación Colombiana de Investigación Agropecuaria (Corpoica), PalmiraPalmiraColombia
  4. 4.Departamento de Bioquímica e Biologia Molecular, Laboratório de Biologia Molecular de PlantasBIOAGRO, Universidade Federal de ViçosaViçosaBrazil

Personalised recommendations