Journal of General Plant Pathology

, Volume 76, Issue 1, pp 37–42

Haplotype diversity and molecular evolution of the rice Pikm locus for blast resistance

  • Ikuo Ashikawa
  • Jianzhong Wu
  • Takashi Matsumoto
  • Ryuji Ishikawa
Fungal Diseases


Pikm-specific rice blast resistance is conferred by a combination of two genes that have a nucleotide-binding site and a leucine-rich repeat (LRR), Pikm1-TS and Pikm2-TS. To study the evolution of these genes, we investigated the allele diversity of their LRR regions in 16 elite rice cultivars and 35 landraces. Both phylogenetic trees were characterized by a deep bifurcation that separated two major clades of alleles. A high level of polymorphism was detected exclusively between these clades and not within each clade. This two-clade structure commonly observed for the two genes suggests that these genes have evolved together through bidirectional differentiation.


Rice blast Resistance gene Pikm Evolution Allele variation 

Supplementary material

10327_2009_213_MOESM1_ESM.ppt (246 kb)
Supplementary Figure S1 (PPT 246 kb)
10327_2009_213_MOESM2_ESM.ppt (224 kb)
Supplementary Figure S2 (PPT 224 kb)
10327_2009_213_MOESM3_ESM.ppt (151 kb)
Supplementary Figure S3 (PPT 151 kb)
10327_2009_213_MOESM4_ESM.ppt (144 kb)
Supplementary Figure S4 (PPT 144 kb)
10327_2009_213_MOESM5_ESM.doc (54 kb)
Supplementary Table S1 (DOC 54 kb)
10327_2009_213_MOESM6_ESM.doc (54 kb)
Supplementary Table S2 (DOC 53 kb)


  1. Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding site–leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180:2267–2276CrossRefPubMedGoogle Scholar
  2. Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site–leucine-rich repeat genes in cereals. Genome Res 12:1871–1884CrossRefPubMedGoogle Scholar
  3. Bergelson J, Kreitman M, Stahl EA, Tian D (2001) Evolutionary dynamics of plant R-genes. Science 292:2281–2285CrossRefPubMedGoogle Scholar
  4. Caicedo AL, Schaal BA, Kunkel BN (1999) Diversity and molecular evolution of the Rps2 resistance gene in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:302–306CrossRefPubMedGoogle Scholar
  5. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249CrossRefPubMedGoogle Scholar
  6. Hayashi K, Yoshida H (2008) Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter. Plant J 57:413–425CrossRefPubMedGoogle Scholar
  7. Hayashi K, Hashimoto N, Daigen M, Ashikawa I (2004) Development of PCR-based SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet 108:1212–1220CrossRefPubMedGoogle Scholar
  8. Hayashi K, Yoshida H, Ashikawa I (2006) Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet 113:251–260CrossRefPubMedGoogle Scholar
  9. Huang C-L, Hwang S-Y, Chiang Y-C, Lin T-P (2008) Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon). Genetics 179:1527–1538CrossRefPubMedGoogle Scholar
  10. Inukai T, Nelson RJ, Zeigler RS, Sarkarung S, Mackill DJ, Bonman JM, Takamure I, Kinoshita T (1994) Allelism of blast resistance genes in near-isogenic lines of rice. Phytopathology 84:1278–1283CrossRefGoogle Scholar
  11. Ishikawa R, Maeda K, Harada T, Niizeki M, Saito K (1991) Classification of Japanese rice varieties into Indica and Japonica types by using isozyme genotypes (in Japanese with English summary). Jpn J Breed 41:605–622Google Scholar
  12. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329CrossRefPubMedGoogle Scholar
  13. Kato H, Imbe T, Tsunematsu H, Fukuta Y (2004) Developing rice blast differential lines and evaluating partial resistance for the breeding of durable rice varieties in the tropics. In: Nozoe T, Fukuta Y, Hardy B (eds) Blessings from nature and science for the future. Proceedings No. 10. IRRI Limited, Los Baños, Philippines, pp 31–44Google Scholar
  14. Kiyosawa S (1968) Inheritance of blast-resistance in some Chinese rice varieties and their derivatives. Jpn J Breed 18:193–204Google Scholar
  15. Kiyosawa S (1969a) Inheritance of resistance of rice varieties to a Philippine fungus strain of Pyricularia oryzae. Jpn J Breed 19:61–73Google Scholar
  16. Kiyosawa S (1969b) Inheritance of blast-resistance in west Pakistani rice variety, Pusur. Jpn J Breed 19:121–128Google Scholar
  17. Kiyosawa S (1978) Identification of blast-resistance genes in some rice varieties. Jpn J Breed 28:287–296Google Scholar
  18. Lee S-K, Song M-Y, Seo Y-S, Kim H-K, Ko S, Cao P-J, Suh J-P, Yi G, Roh J-H, Lee S, An G, Hahn T-R, Wang G-L, Ronald P, Jeon J-S (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 181:1627–1638CrossRefPubMedGoogle Scholar
  19. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  20. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61CrossRefPubMedGoogle Scholar
  21. Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J (2003) Natural selection for polymorphism in the disease resistance gene Rps2 of Arabidopsis thaliana. Genetics 163:735–746PubMedGoogle Scholar
  22. Noël L, Moores TL, van der Biezen EA, Parniske M, Daniels MJ, Parker JE, Jones JDG (1999) Pronounced intraspecific haplotype divergence at the Rpp5 complex disease resistance locus of Arabidopsis. Plant Cell 11:2099–2111CrossRefPubMedGoogle Scholar
  23. Oka HI (1958) Intervarietal variation and classification of cultivated rice. Indian J Genet Plant Breed 18:79–89Google Scholar
  24. Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G-L (2006) The broad-spectrum blast gene Pi9 encodes a nucleotide-binding site–leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172:1901–1914CrossRefPubMedGoogle Scholar
  25. Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL (2004) The maintenance of extreme amino acid diversity at the disease resistance gene, Rpp13, in Arabidopsis thaliana. Genetics 166:1517–1527CrossRefPubMedGoogle Scholar
  26. Smith SM, Pryor AJ, Hulbert SH (2004) Allelic and haplotypic diversity at the Rp1 rust resistance locus of maize. Genetics 167:1939–1947CrossRefPubMedGoogle Scholar
  27. Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390CrossRefPubMedGoogle Scholar
  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  29. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  30. Wang X, Jia Y, Shu QY, Wu D (2008) Haplotype diversity at the Pi-ta locus in cultivated rice and its wild relatives. Phytopathology 98:1305–1311CrossRefPubMedGoogle Scholar
  31. Xu X, Hayashi N, Wang CT, Kato H, Fujimura T, Kawasaki S (2008) Efficient authentic fine mapping of the rice blast resistance gene Pik-h in the Pik cluster, using new Pik-h-differentiating isolates. Mol Breed 22:289–299CrossRefGoogle Scholar
  32. Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591CrossRefPubMedGoogle Scholar
  33. Zhou B, Dolan M, Sakai H, Wang G-L (2007) The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol Plant Microbe Interact 20:63–71CrossRefPubMedGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer 2009

Authors and Affiliations

  • Ikuo Ashikawa
    • 1
  • Jianzhong Wu
    • 2
  • Takashi Matsumoto
    • 2
  • Ryuji Ishikawa
    • 3
  1. 1.NARO, National Institute of Crop ScienceTsukubaJapan
  2. 2.Plant Genome Research UnitNational Institute of Agrobiological SciencesTsukubaJapan
  3. 3.Faculty of Agriculture and Life ScienceHirosaki UniversityHirosakiJapan

Personalised recommendations