Journal of General Plant Pathology

, Volume 72, Issue 1, pp 34–39 | Cite as

Flagella-mediated motility is required for biofilm formation by Erwinia carotovora subsp. carotovora



To elucidate the role of flagella in biofilm formation by Erwinia carotovora subsp. carotovora EC1, we used a nonflagellate, nonmotile mutant (ΔfliC) and a flagellate, nonmotile mutant (ΔmotA). A biofilm-inducing medium, which contains the yeast peptone (YP) medium plus the salts of M-63 minimal medium, supported biofilm formation to a greater extent than either the YP or Luria Bertani (LB) medium alone. We demonstrated that both the ΔfliC and ΔmotA mutants greatly reduced their ability to form a biofilm on the surface of the wells of polyvinyl chloride (PVC) microtiter plates. The inability of both mutants to form biofilm on the PVC surface was further confirmed with phase-contrast microscopy. Both aflagellate (ΔfliC) and flagellate (ΔmotA) nonmotile mutants were equally defective in attachment to the PVC surface. The treatment of bacteria with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), which inhibits the motility of this organism, reduced greatly the biofilm formation. Based on these results, flagella-mediated motility may play an important role in biofilm formation of E. carotovora subsp. carotovora EC1.

Key words

Erwinia carotovora subsp. carotovora EC1 Biofilm formation Motility Carbonyl cyanide m-chlorophenylhydrazone ΔfliC ΔmotA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA, Struhl, K 1987Current protocols in molecular biologyWileyNew YorkGoogle Scholar
  2. Barras, F, Gijsegem, FV, Chatterjee, AK 1994Extracellular enzymes and pathogenesis of soft-rot ErwiniaAnnu Rev Phytopathol32201234Google Scholar
  3. Boyd, A, Chakrabarty, AM 1995Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharideJ Ind Microbiol15162168CrossRefPubMedGoogle Scholar
  4. Choy, WK, Zhou, L, Syn, CK, Zhang, LH, Swarup, S 2004MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas speciesJ Bacteriol18672217228CrossRefPubMedGoogle Scholar
  5. Condemine, G, Castillo, A, Passeri, F, Enard, C 1999The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemiMol Plant Microbe Interact124552PubMedGoogle Scholar
  6. Costerton, JW 1995Overview of microbial biofilmsJ Ind Microbiol15137140CrossRefPubMedGoogle Scholar
  7. Costerton, JW, Cheng, K-J, Geesey, GG, Ladd, TI, Nickel, JC, Dasgupta, M, Marrie, TJ 1987Bacterial biofilms in nature and diseaseAnnu Rev Microbiol41435464CrossRefPubMedGoogle Scholar
  8. Costerton, JW, Lewandowski, Z, Caldwell, DE, Korber, DR, Lappin-Scott, HM 1995Microbial biofilmsAnnu Rev Microbiol49711745CrossRefPubMedGoogle Scholar
  9. Costerton, JW, Stewart, PS, Greenberg, EP 1999Bacterial biofilms: a common cause of persisent infectionsScience28413181322CrossRefPubMedGoogle Scholar
  10. Danese, PN, Pratt, LA, Dove, SL, Kolter, R 2000The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilmsMol Microbiol37424432CrossRefPubMedGoogle Scholar
  11. Davies, DG, Geesey, GG 1995Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continous cultureAppl Environ Microbiol61860867PubMedGoogle Scholar
  12. Davies, DG, Chakrabarty, AM, Geesey, GG 1993Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosaAppl Environ Microbiol5911811186PubMedGoogle Scholar
  13. Dewanti, R, Wong, AC 1995Influence of culture conditions on biofilm formations by Escherichia coli 0157:H7Int J Food Microbiol26147164CrossRefPubMedGoogle Scholar
  14. Figurski, DH, Helinski, DR 1979Replication of an origin containing derivative of plasmid RK2 dependent on a plasmid function provided in transProc Natl Acad Sci USA7616481652PubMedGoogle Scholar
  15. Geesey, GG, Richardson, WT, Yeomans, HG, Irvin, RT, Costerton, JW 1977Microscopic examination of natural sessile bacterial populations from an alpine streamCan J Microbiol2317331736PubMedGoogle Scholar
  16. Herroro, M, de Lorenzo, V, Timmis, KN 1990Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteriaJ Bacteriol17265576567Google Scholar
  17. Hood, SK, Zottola, EA 1997Adherence to stainless steel by food borne microorganisms during growth in model food systemsInt J Food Microbiol37145153CrossRefPubMedGoogle Scholar
  18. Hossain, MM, Shibata, S, Aizawa, SI, Tsuyumu, S 2005Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovoraPhysiol Mol Plant Pathol66134143CrossRefGoogle Scholar
  19. Hoyle, BD, Costerton, JW 1991Bacterial resistance to antibiotics: the role of biofilmsProg Drug Res3791105PubMedGoogle Scholar
  20. Hoyle, BD, Alcantara, J, Costerton, JW 1992Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillinAntimicrob Agents Chemother3620542056PubMedGoogle Scholar
  21. Ichimiya, T, Yamasaki, T, Nasu, M 1994In vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formationJ Antimicrob Chemother34331341PubMedGoogle Scholar
  22. Kaniga, K, Delor, I, Cornelis, GR 1991A wide-host range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocoliticaGene109137141CrossRefPubMedGoogle Scholar
  23. Kharazmi, A 1991Mechanisms involved in the evasion of host-defence by Pseudomonas aeruginosaImmunol Lett30201205CrossRefPubMedGoogle Scholar
  24. Klausen, M, Heydorn, A, Ragas, P, Lambertsen, L, Aaes-Jorgensen, A, Molin, S, Tolker-Nielsen, T 2003Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutantsMol Microbiol4815111524CrossRefPubMedGoogle Scholar
  25. Kristian, SA, Golda, T, Ferracin, F, Cramton, SE, Neumeister, B, Peschel, A, Gotz, F, Landmann, R 2004The ability of biofilm formation does not influence virulence of Staphylococcus aureus and host response in a mouse tissue cage infection modelMicrob Pathogenesis36237245CrossRefGoogle Scholar
  26. Lawrence, JR, Delaquis, PJ, Korber, DR, Caldwell, DE 1987Behavior of Psedomonas fluorescens within the hydrodynamic boundary layers of surface microenvironmentsMicrob Ecol14114Google Scholar
  27. Leid, JG, Shirtliff, ME, Costerton, JW, Stoodley, AP 2002Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilmsInfect Immun7063396345CrossRefPubMedGoogle Scholar
  28. Marques, LLR, Ceri, H, Manfio, GP, Reid, DM, Olson, ME 2002Characterization of biofilm formation by Xylella fastidiosa in vitroPlant Dis86633638Google Scholar
  29. Mulholland, V, Hinton, JCD, Sidebotham, J, Toth, IK, Hyman, LJ, Perombelon, MCM, Reeves, PJ, Salmond, GPC 1993A pleiotropic reduced virulence (Rvi−) mutant of Erwinia carotovora subspecies atroseptica is defective in flagella assembly proteins that are conserved in plant and animal bacterial pathogensMol Microbiol9343356PubMedGoogle Scholar
  30. O'Toole, GA, Kolter, R 1998aInitiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysisMol Microbiol28449461CrossRefGoogle Scholar
  31. O'Toole, GA, Kolter, R 1998bFlagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm developmentMol Microbiol30295304CrossRefGoogle Scholar
  32. O'Toole, GA, Gibbs, KA, Hager, PW, Phibbs, PV,Jr, Kolter, R 2000The global carbon metabolism regulator Crc is a component of a signal transduction pathway required for biofilm development by Pseudomonas aeruginosaJ Bacteriol182425431CrossRefPubMedGoogle Scholar
  33. Perombelon, MCM, Kelman, A 1980Ecology of the soft-rot erwiniasAnnu Rev Phytopathol18361387CrossRefGoogle Scholar
  34. Pratt, LA, Kolter, R 1998Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I piliMol Microbiol30285293CrossRefPubMedGoogle Scholar
  35. Sambrook, J, Fristsch, EF, Maniatis, T 1989Molecular cloning: a laboratory manual2nd edn.Cold Spring Harbor LaboratoryCold Spring Harbor, NYGoogle Scholar
  36. Schoonejans, E, Expert, D, Toussaint, A 1987Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phiEC2-resistant mutantsJ Bacteriol16940114017PubMedGoogle Scholar
  37. Tsuyumu, S 1977Inducer of pectic acid lyase in Erwinia carotovoraNature269237238CrossRefPubMedGoogle Scholar
  38. Verhoef, J 1997

    Host defense against infection

    Crossley, KBArcher, GL eds. The staphylococci in human diseaseChurchill LivingstoneNY213232
    Google Scholar
  39. Walker, TS, Bais, HP, Deziel, E, Schweizer, HP, Rahme, LG, Fall, R, Vivanco, JM 2004Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formations, and root exudationPlant Physiol134320331CrossRefPubMedGoogle Scholar
  40. Watnick, PI, Fullner, KJ, Kolter, R 1999A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae E1TorJ Bacteriol18136063609PubMedGoogle Scholar
  41. Yildiz, FH, Schoolnik, GK 1999Vibrio cholerae 01 E1 Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formationProc Natl Acad Sci USA9640284033CrossRefPubMedGoogle Scholar
  42. Zottola, EA, Sasahara, KC 1994Microbial biofilms in the food processing industry – should they be a concern?Int J Food Microbiol23125148CrossRefPubMedGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer-Verlag Tokyo 2006

Authors and Affiliations

  1. 1.Faculty of Agriculture, Shizuoka UniversityGifu United Graduate School of AgricultureShizuokaJapan
  2. 2.Laboratory of Plant Pathology, Faculty of AgricultureShizuoka UniversityShizuokaJapan

Personalised recommendations