Journal of General Plant Pathology

, Volume 72, Issue 1, pp 6–15 | Cite as

Reactive oxygen species (ROS) generation and ROS-induced lipid peroxidation are associated with plasma membrane modifications in host cells in response to AK-toxin I from Alternaria alternata Japanese pear pathotype

  • Naoto Shimizu
  • Naoki Hosogi
  • Gang-Su Hyon
  • Shan Jiang
  • Kanako Inoue
  • Pyoyun ParkEmail author


AK-toxin I caused plasma membrane modifications with plasma membrane-derived membrane fragments only in sensitive Japanese pear tissues. H2O2 generation was abundant in both the membrane fragments and the plasma membranes of the toxin-treated sensitive tissues. Whether lipid peroxidation was induced in plasma membranes of the toxin-treated sensitive tissues was examined biochemically and histochemically. Lipid peroxidation was caused only in the toxin-treated sensitive tissues or the toxin-treated plasma membrane-enriched fractions from sensitive young pear fruits. The results indicated that the peroxidation was probably induced by reactive oxygen species in the modified plasma membranes by action of toxin, suggesting that peroxidation is closely associated with plasma membrane modifications.

Key words

AK-toxin I Lipid peroxidation H2O2 generation Ultrastructure Japanese pear plants Alternaria alternata Japanese pear pathotype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asada, K, Nakano, M, Kakinuma, K 1992Manual for measurement of reactive oxygenAsada, KNakano, MKakinuma, K eds. Induction of O2 generation at cell-free experimentKoudansya ScientificTokyo7376Google Scholar
  2. Blanchette-Mackie, EJ, Scow, RO 1981Lipolysis and lamellar structures in white adipose tissue of young rats: lipid movement in membranesJ Ultrastruct Res77295318PubMedGoogle Scholar
  3. Bradford, MM 1976A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye bindingAnal Biochem72248254CrossRefPubMedGoogle Scholar
  4. Bradley, DJ, Kjellbom, P, Lamb, CJ 1992Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense responseCell702130CrossRefPubMedGoogle Scholar
  5. Briggs, RT, Drath, DB, Karnovsky, ML, Karnovsky, MJ 1975Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical methodJ Cell Biol67566586CrossRefPubMedGoogle Scholar
  6. Degousée, N, Triantaphylidès, C, Montillet, J-L 1994Involvement of oxidative processes in the signaling mechanisms leading to the activation of glyceollin synthesis in soybean (Glycine max)Plant Physiol104945952PubMedGoogle Scholar
  7. Esterbauer, H, Zollner, H, Schaue, RJ 1990Aldehydes formed by lipid peroxidation: mechanisms of formation, occurrence and determinationVigo-Pelfrey, C eds. Membrane lipid oxidation, vol 1CRCBoca Raton, FL239283Google Scholar
  8. Igarashi, O, Shimazaki, H 1995aAutoxidationIgarashi, OShimazaki, H eds. Experimental method for peroxidized lipids and free radicalsSociety Publication CenterTokyo34Google Scholar
  9. Igarashi, O, Shimazaki, H 1995bTiobarbituric acid reaction and measurement of lipid peroxidationIgarashi, OShimazaki, H eds. Experimental method for peroxidized lipids and free radicalsSociety Publication CenterTokyo144148Google Scholar
  10. Katumoto, T 1992Preparation methods for monocultured cells, free cells and high molecular materialsHirano, KMiyazawa, C eds. Quick witted electron microscopic techniquesAsakuraTokyo5459Google Scholar
  11. Kikugawa, K, Kojima, T, Kosugi, H 1990Major thiobarbituric acid-reactive substances of liver homogenate are alkadienalsFree Radical Res Commun8107113Google Scholar
  12. Kikugawa, K, Kojima, T, Yamaki, S, Kosugi, H 1992Interpretation of the thiobarbituric acid reactivity of rat liver and brain homogenates in the presence of ferric ion and ethylenediaminetetraacetic acidAnal Biochem202249255CrossRefPubMedGoogle Scholar
  13. Lamb, C, Dixon, RA 1997The oxidative burst in plant-disease resistanceAnnu Rev Plant Physiol Plant Mol Biol48251275CrossRefPubMedGoogle Scholar
  14. Mehdy, MC 1994Active oxygen species in plant defense against pathogensPlant Physiol105467472PubMedGoogle Scholar
  15. Mike, FQ, Olivera, G, Branka, S, Flavia, N 2002Plasma membrane lipids in the resurrection plant Ramonda serbica following dehydration and rehydrationJ Exp Bot521592166Google Scholar
  16. Nakajima, T, Sasakuri, Y 1993Lipids and steroidsOgawa, KNakane, KKawaoi, AKishino, YTuchiyama, HMorii, G eds. Specific staining methods for peroxidized lipidsAsakuraTokyo114116Google Scholar
  17. Nakashima, T, Ueno, T, Fukami, T 1982Structure elucidation of AK-toxins, host-specific phytotoxic metabolites produced by Alternaria kikuchiana TanakaTetrahedron Lett2344694472CrossRefGoogle Scholar
  18. Nakashima, T, Ueno, T, Fukami, T, Taga, H, Masuda, H, Osaka, K, Otani, H, Kohomoto, K, Nishimura, S 1985Isolation and structure of AK-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria alternata Japanese pear pathotypeAgric Biol Chem49807816Google Scholar
  19. Nathan, DG, Baehner, RL, Weaver, DK 1969Failure of nitroblue tetrazolium reduction in the phagocytic vacuoles of leukocytes in chronic granulomatous diseaseJ Clin Invest4818951904PubMedGoogle Scholar
  20. Nishimura, S, Kohmoto, K 1983Host-specific toxins and chemical structures from Alternria speciesAnnu Rev Phytopathol2187116CrossRefGoogle Scholar
  21. Otani, H, Kohmoto, K, Nishimura, S 1989Action sites for AK-toxin produced by the Japanese pear pathotype of Alternaria alternataKohmoto, KDurbin, RD eds. Host-specific toxins: recognition and specificity factors in plant diseaseTottori UniversityTottori107120Google Scholar
  22. Park, P 1977Origin of inclusive materials between cell walls and invaginated plasma membranes in cells of susceptible leaves of Japanese pear treated with a host-specific toxin from Alternaria kikuchiana TanakaPhysiol Plant Pathol113942Google Scholar
  23. Park, P 1989Ultrastructural studies on the mode-of-action of Alternaria host-specific toxins.Kohmoto, KDurbin, RD eds. Host-specific toxin: recognition and specificity factors in plant diseaseTottori UniversityTottori121133Google Scholar
  24. Park, P, Fukutomi, M, Akai, S 1976Effect of the host-specific toxin from Alternaria kikuchiana on the ultrastructure of plasma membranes of cells in leaves of Japanese pearPhysiol Plant Pathol9167174Google Scholar
  25. Park, P, Fujiwara, T, Fukutomi, M 1977Application of alkaline bismuth staining solution to Japanese pear leaf and fungal cellsJ Electron Microsc26335337Google Scholar
  26. Park, P, Ohno, T, Kato-Kikuchi, H, Miki, H 1987aAlkaline bismuth stain as a tracer for Golgi vesicles of plant cellsStain Tech62253256Google Scholar
  27. Park, P, Ohno, T, Nishimura, S, Kohmoto, K, Otani, H 1987bLeakage of sodium ions from plasma membrane modification, associated with permeability, in host cells treated with a host-specific toxin from a Japanese pear pathotype of Alternaria alternataCan J Bot65330339Google Scholar
  28. Park, P, Ohno, T, Nishimura, S, Kohmoto, K, Otani, H 1988Golgi vesicles fused with invaginated plasma membranes in host cells treated with a host-specific toxin from a Japanese pear pathotype of Alternaria alternataAnn Phytopath Soc Jpn54493502Google Scholar
  29. Park, P, Ohno, T, Nishimura, S, Kohmoto, K, Otani, H 1989Activation of carbohydrate-containing Golgi vesicles in susceptible leaf cells of Japanese pear responding with AK-toxinAnn Phytopath Soc Jpn55290295Google Scholar
  30. Park, P, Ohno, T, Nishimura, S, Kohmoto, K, Otani, H 1994Artifact in plant tissues fixed with chemical fixatives (Pathological estimation of membranous fragments appearing at AK-toxin-inducing plasma membrane modification in susceptible Japanese pear leaves)Ann Phytopath Soc Jpn60431440Google Scholar
  31. Rotem J (1994) The genus Alternaria: biology, epidemiology, and pathogenicity. APS, St. PaulGoogle Scholar
  32. Shimizu, N, Hosogi, N, Hyon, GS, Shinogi, T, Suzuki, T, Jiang, S, Inoue, K, Kita, S, Park, P 2005High pressure freezing and freeze-substitution electron microscopy produced inherent types of artifact in plant tissuesJ Electron Microsc Technol Med Biol186268Google Scholar
  33. Shinogi, T, Suzuki, T, Narusaka, Y, Park, P 2002Ultrastructural localization of hydrogen peroxide in host leaves treated with AK-toxin I produced by Alternaria alternata Japanese pear pathotypeJ Gen Plant Pathol683845Google Scholar
  34. Shinogi, T, Suzuki, T, Kurihara, T, Narusaka, Y, Park, P 2003Microscopic detection of reactive oxygen species generation in the compatible and incompatible interaction of Alternaria alternata Japanese pear pathotype and host plantsJ Gen Plant Pathol69716CrossRefGoogle Scholar
  35. Suzuki, T, Shinogi, T, Unno, K, Narusaka, Y, Park, P 2002β-1,3-d-Glucan transported from Golgi apparatus of Japanese pear leaves is a component of extracellular polysaccharides accumulated after AK-toxin I treatmentJ Gen Plant Pathol68267276Google Scholar
  36. Taguchi, F, Shimizu, R, Inagaki, Y, Toyoda, K, Shiraishi, T, Ichinose, Y 2003Post-translational modification of flagellin determines the specificity of HR inductionPlant Cell Physiol44342349CrossRefPubMedGoogle Scholar
  37. Tanaka, A, Tsuge, T 2000Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternataMol Plant Microbe Interact13975986PubMedGoogle Scholar
  38. Tanaka, A, Shiotani, H, Yamamoto, M, Tsuge, S 1999Insertional mutagenesis and cloning of genes required for biosynthesis of host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternataMol Plant Microbe Interact12691702PubMedGoogle Scholar
  39. Tanaka, M, Anzai, S, Takeno, K, Nakagawa, M 1994Antioxidant action of thiopalmitic acid on microsomal lipid peroxidationBiol Pharm Bull1711511154PubMedGoogle Scholar
  40. Tanaka S (1933) Studies on black spot disease of Japanese pear (Pyrus serotina Rehd.) Memoirs of the College of Agriculture, Kyoto University 28:1–31Google Scholar
  41. von Gönner, M, Schlösser, E, Neubacher, H 1993Evidence from electron-spin resonance for the formation of free radicals during infection of Avena sativa by Drechslera sppPhysiol Mol Plant Pathol42405412CrossRefGoogle Scholar
  42. von Tiedemann, A 1997Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean levels with Botrytis cinereaPhysiol Mol Plant Pathol50151166Google Scholar
  43. Yoshida, S, Kawata, T, Uemura, M, Niki, T 1986aProperties of plasma membrane isolated from chilling-sensitive etiolated seeding of Vigna radiata LPlant Physiol80152160Google Scholar
  44. Yoshida, S, Kawata, T, Uemura, M, Niki, T 1986bIsolation and characterization of tonoplast from chilling-sensitive etiolated seeding of Vigna radiata LPlant Physiol80161166Google Scholar

Copyright information

© The Phytopathological Society of Japan and Springer-Verlag Tokyo 2006

Authors and Affiliations

  • Naoto Shimizu
    • 1
  • Naoki Hosogi
    • 1
  • Gang-Su Hyon
    • 1
  • Shan Jiang
    • 1
  • Kanako Inoue
    • 1
  • Pyoyun Park
    • 1
    Email author
  1. 1.Laboratory of Stress Cytology, The Graduate School of Science and TechnologyKobe UniversityKobeJapan

Personalised recommendations