Journal of General Plant Pathology

, Volume 71, Issue 4, pp 263–272 | Cite as

Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequences of IGS, MAT1, and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group

  • Masato Kawabe
  • Yumiko Kobayashi
  • Gen Okada
  • Isamu Yamaguchi
  • Tohru Teraoka
  • Tsutomu ArieEmail author


Three evolutionary lineages of the tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici were found among a worldwide sample of isolates based on phylogenetic analysis of the ribosomal DNA intergenic spacer region. Each lineage consisted of isolates mainly belonging to a single or closely related vegetative compatibility group (VCG) and a single mating type (MAT). The first lineage (A1) was composed of isolates VCG 0031 and MAT1-1; the second (A2) included VCG 0030 and/or 0032 and MAT1-1; and the third (A3) included VCG 0033 and MAT1-2. Race 1 and race 2 isolates belonged to the A1 or A2 lineages, and race 3 belonged to A2 or A3 lineages, suggesting that there is no correlation between race and lineage. However, for the isolates from Japan, race 1 (with one exception), race 2, and race 3 isolates belonged to A2, A1, and A3 lineages, respectively. These results suggest that the races could have evolved independently in each lineage; and in Japan the present races were likely to have been introduced independently after they had evolved in other locations.

Key words

Fusarium oxysporum Phylogeny rDNA IGS MAT pg1 VCG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, LJ, Tucker, CM 1945Physiologic specialization in the tomato wilt fungus Fusarium oxysporum f. lycopersiciJ Agric Res70303313Google Scholar
  2. Appel, DJ, Gordon, TR 1996Relationships among pathogenic and nonpathogenic isolates of Fusarium oxysporum based on the partial sequence of the intergenic spacer region of the ribosomal DNAMol Plant Microbe Interact9125138PubMedGoogle Scholar
  3. Arie, T, Christiansen, SK, Yoder, OC, Turgeon, BG 1997Efficient cloning of ascomycete mating type genes by PCR amplification of the conserved MAT HMG boxFungal Genet Biol21118130CrossRefPubMedGoogle Scholar
  4. Arie, T, Gouthu, S, Shimazaki, S, Kamakura, T, Kimura, M, Inoue, M, Takio, K, Ozaki, A, Yoneyama, Y, Yamaguchi, I 1998Immunological detection of endopolygalacturonase secretion by Fusarium oxysporum in plant tissue and sequencing of its encoding geneAnn Phytopathol Soc Jpn64715Google Scholar
  5. Arie, T, Yoshida, T, Shimizu, T, Kawabe, M, Yoneyama, K, Yamaguchi, I 1999Assessment of Gibberella fujikuroi mating type by PCRMycoscience40311314Google Scholar
  6. Arie, T, Kaneko, I, Yoshida, T, Noguchi, M, Nomura, Y, Yamaguchi, I 2000Mating-type genes from asexual phytopathogenic ascomycetes Fusarium oxysporum and Alternaria alternataMol Plant Microbe Interact1313301339PubMedGoogle Scholar
  7. Barve, MP, Arie, T, Salimath, S, Muehlbauer, FJ, Peever, TL 2003Cloning and characterization of mating type (MAT) locus from Ascochyta rabiei (telemorph: Didymella rabiei) and a MAT phylogeny of legunum-associated Ascochyta sFungal Genet Biol39151167CrossRefPubMedGoogle Scholar
  8. Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, UKGoogle Scholar
  9. Cai, G, Gale, LR, Schneider, RW, Kistler, HC, Davis, RM, Elias, KS, Miyao, EM 2003Origin of race 3 of Fusarium oxysporum f. sp. lycopersici at a single site in CaliforniaPhytopathology9310141022Google Scholar
  10. Correll, JC, Klittich, CJR, Leslie, JF 1987Nitrate nonutilizing mutants of Fusarium oxysporum and their use in vegetative compatibility testsPhytopathology7716401646Google Scholar
  11. Di Pietro, A, Roncero, MIG 1996Endopolygalacturonase from Fusarium oxysporum f. sp. lycopersici: purification, characterization, and production during infection of tomato plantsPhytopathology8613241330Google Scholar
  12. Di Pietro, A, Roncero, MIG 1998Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporumMol Plant Microbe Interact119198PubMedGoogle Scholar
  13. Elias, KS, Schneider, RW 1991Vegetative compatibility groups in Fusarium oxysporum f. sp. lycopersiciPhytopathology81159162Google Scholar
  14. Elias, KS, Schneider, RW 1992Genetic diversity within and among races and vegetative compatibility groups of Fusarium oxysporum f. sp. lycopersici as determined by isozyme analysisPhytopathology8214211427Google Scholar
  15. Elias, KS, Zamir, D, Lichtman-Pleban, T, Katan, T 1993Population structure of Fusarium oxysporum f. sp. lycopersici: restriction fragment length polymorphisms provide genetic evidence that vegetative compatibility group is an indicator of evolutionary originMol Plant Microbe Interact6565572Google Scholar
  16. Felsenstein, J 1981Evolutionary tree from DNA sequences: a maximum likelihood approachJ Mol Evol39783791Google Scholar
  17. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  18. Fitch, WM 1977On the problem of discovering the most parsimonious treeAm Nat111223257CrossRefGoogle Scholar
  19. Gale, LR, Katan, T, Kistler, HC 2003The probable center of origin of Fusarium oxysporum f. sp. lycopersici VCG 0033Plant Dis8714331438Google Scholar
  20. García-Maceira, FI, Di Pietro, A, Roncero, MIG 2000Cloning and distribution of pgx4 encoding an in planta expressed exopoly-galacturonase from Fusarium oxysporumMol Plant Microbe Interact13359365PubMedGoogle Scholar
  21. Gómez-Gómez, E, Ruíz-Roldán, MC, Di Pietro, A, Roncero, MI, Hera, C 2002Role in pathogenesis of two endo-β-1,4-xylanase genes from the vascular wilt fungus Fusarium oxysporumFungal Genet Biol35213333CrossRefPubMedGoogle Scholar
  22. Gordon, TR, Martyn, RD 1997The evolutionary biology of Fusarium oxysporumAnnu Rev Phytopathol35111128CrossRefPubMedGoogle Scholar
  23. Grattidge, R, O’Brien, RG 1982The occurrence of a third race of Fusarium wilt of tomato in QueenslandPlant Dis66165166Google Scholar
  24. Hosobuchi, Y 1998Fusarium oxysporum infecting fusarium wilt resistant tomato cultivarsAnn Phytopathol Soc Jpn64434(abstract, in Japanese)Google Scholar
  25. Huertas-González, MD, Ruiz-Roldán, MC, Maceria, FIG, Roncero, MIG, Di Pietro, A 1999Cloning and characterization of pl1 encoding an in planta-secreted pectate lyase of Fusarium oxysporumCurr Genet353640CrossRefPubMedGoogle Scholar
  26. Katan, T 1999Current status of vegetative compatibility groups in Fusarium oxysporumPhytoparasitica275164Google Scholar
  27. Katan, T, Di Primo, P 1999Current status of vegetative compatibility groups in Fusarium oxysporum: supplementPhytoparasitica27273277Google Scholar
  28. Katan, T, Zamir, D, Sarfatti, M, Katan, J 1991Vegetative compatibility groups and subgroups in Fusarium oxysporum f. sp. radicis-lycopersiciPhytopathology81255262Google Scholar
  29. Kawabe, M, Mizutani, K, Yoshida, T, Teraoka, T, Yoneyama, K, Yamaguchi, I, Arie, T 2004Cloning a pathogenicity-related gene, FPD1, in Fusarium oxysporum f. sp. lycopersiciJ Gen Plant Pathol701620CrossRefGoogle Scholar
  30. Kimura, M 1980A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequencesJ Mol Evol16111120PubMedGoogle Scholar
  31. Kistler, HC 1997Genetic diversity in the plant-pathogenic fungus Fusarium oxysporumPhytopathology87474479Google Scholar
  32. Kumar, S, Tamura, K, Jakobsen, IB, Nei, M 2001MEGA2: molecular evolutionary genetics analysis softwareBioinformatics1712441245CrossRefPubMedGoogle Scholar
  33. Kuninaga, S, Yokosawa, R 1992Genetic diversity of Fusarium oxysporum f. sp. lycopersici in restriction fragment length polymorphisms of mitochondrial DNATrans Mycol Soc Jpn33449459Google Scholar
  34. Leslie, JF 1993Fungal vegetative compatibilityAnnu Rev Phytopathol31127150Google Scholar
  35. Marlatt, ML, Correll, JC, Kaufmann, P 1996Two genetically distinct populations of Fusarium oxysporum f. sp. lycopersici race 3 in the United StatesPlant Dis8013361342Google Scholar
  36. Masunaga, T, Shiomi, H, Komada, H 1998Identification of race 3 of Fusarium oxysporum f. sp. lycopersici isolated from tomato in Fukuoka PrefectureAnn Phytopathol Soc Jpn64435(abstract, in Japanese)Google Scholar
  37. Mes, JJ, Weststeijn, EA, Herlaar, F, Lambalk, JJM, Wijbrandi, J, Haring, MA, Cornelissen, BJC 1999Biological and molecular characterization of Fusarium oxysporum f. sp. lycopersici divides race 1 isolates into separate virulence groupsPhytopathology89156160Google Scholar
  38. O’Donnell, K, Kistler, HC, Cigelnik, E, Ploetz, R 1998Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondria gene genealogiesProc Natl Acad Sci USA9520442049CrossRefPubMedGoogle Scholar
  39. Peever, TL, Ibañez, A, Akimitsu, K, Timmer, LW 2002Worldwide phylogeography of the citrus brown spot pathogen, Alternaria alternataPhytopathology92794802Google Scholar
  40. Pöggeler, S 1999Phylogenetic relationships between mating-type sequences from homothallic and heterothallic ascomycetesCurr Genet36222231CrossRefPubMedGoogle Scholar
  41. Puhalla, JE 1985Classification of strains of Fusarium oxysporum on the basis of vegetative compatibilityCan J Bot63179183Google Scholar
  42. Ruiz-Roldán, MC, Di Pietro, A, Huertas-González, MD, Roncero, MIG 1999Two xylanase genes of the vascular wilt pathogen Fusarium oxysporum are differentially expressed during infection of tomato plantsMol Gen Genet261530536CrossRefPubMedGoogle Scholar
  43. Saiou, N, Nei, M 1987The neighbor-joining method: a new method for reconstructing phylogenetic treeMol Biol Evol4406425PubMedGoogle Scholar
  44. Sela-Buurlage, MB, Budai-Hadrian, O, Pan, Q, Carmel-Gore, L, Vunsch, R, Zamir, D, Fluhr, R 2001Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex lociMol Genet Genomics26511041111CrossRefPubMedGoogle Scholar
  45. Takehara, T 1992Nitrate-nonutilizing mutants of fungi and their usePlant Protection46395399 (in Japanese)Google Scholar
  46. Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucleic Acids Res2548764882CrossRefPubMedGoogle Scholar
  47. Turgeon, BG 1998Application of mating type gene technology to problems in fungal biologyAnnu Rev Phytopathol36115137CrossRefPubMedGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer-Verlag Tokyo 2005

Authors and Affiliations

  • Masato Kawabe
    • 1
    • 2
  • Yumiko Kobayashi
    • 3
  • Gen Okada
    • 4
  • Isamu Yamaguchi
    • 5
  • Tohru Teraoka
    • 6
  • Tsutomu Arie
    • 6
    Email author
  1. 1.United Graduate School of Agricultural ScienceTokyoJapan
  2. 2.University of Agriculture and Technology (TUAT)TokyoJapan
  3. 3.Microbial Toxicology LaboratoryRIKENWakoJapan
  4. 4.Japan Collection of Microorganisms (JCM)RIKEN Bioresource CenterWakoJapan
  5. 5.Environmental Plant Research GroupRIKEN Plant Science CenterYokohamaJapan
  6. 6.Institute of Symbiotic Science and TechnologyTokyo University of Agriculture and Technology (TUAT)TokyoJapan

Personalised recommendations