Advertisement

Fog harvesting against water shortage

  • Satiye Korkmaz
  • İ. Afşin KariperEmail author
Review
  • 57 Downloads

Abstract

Fog harvesting is a sustainable, simple and cost-effective technique to collect water from the air. Clean, safe and drinkable water resources are created by installing this fog harvesting apparatus in deserts, in arid regions and in countries with high population density. Here we review principles and recent developments in fog harvesting.

Keywords

Fog harvesting Water shortage Environment Water storage 

Notes

References

  1. Abdulhussein AT, Kannarpady GK, Wright AB, Ghosh A, Biris AS (2016) Current trend in fabrication of complex morphologically tunable superhydrophobic nano scale surfaces. Appl Surf Sci 384:311–332.  https://doi.org/10.1016/j.apsusc.2016.04.186 CrossRefGoogle Scholar
  2. Abdul-Wahab SA, Lea V (2008) Reviewing fog water collection worldwide and in Oman. Int J Environ Stud 65:487–500.  https://doi.org/10.1080/00207230802149983 CrossRefGoogle Scholar
  3. Almasian A, Chizari Fard Gh, Mirjalili M, Parvinzadeh Gashti M (2018) Fluorinated-PAN nanofibers: preparation, optimization, characterization and fog harvesting property. J Ind Eng Chem 62:146–155.  https://doi.org/10.1016/j.jiec.2017.12.052 CrossRefGoogle Scholar
  4. Azad MA, Krause T, Danter L, Baars A, Koch K, Barthlott W (2017) Fog collection on polyethylene terephthalate (PET) fibers: influence of cross-section and surface structure. Langmuir 33:5555–5564.  https://doi.org/10.1021/acs.langmuir.7b00478 CrossRefGoogle Scholar
  5. Batisha AF (2015) Feasibility and sustainability of fog harvesting. Sustain Water Qual Ecol 6:1–10.  https://doi.org/10.1016/j.swaqe.2015.01.002 CrossRefGoogle Scholar
  6. Bhushan B, Chae Jung Y (2011) Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Prog Mater Sci 56:1–108.  https://doi.org/10.1016/j.pmatsci.2010.04.003 CrossRefGoogle Scholar
  7. Cabi E, Doğan M (2010) Taxonomic study on the genus Eremopyrum (Ledeb.) Jaub. et Spach (Poaceae) in Turkey. Plant Syst Evol 287:129–140.  https://doi.org/10.1007/s00606-010-0306-1 CrossRefGoogle Scholar
  8. Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F (2013) Recent advances in designing superhydrophobic surfaces. J Colloid Interface Sci 402:1–18.  https://doi.org/10.1016/j.jcis.2013.03.041 CrossRefGoogle Scholar
  9. Cereceda P, Larrain H, Osses P, Faras M, Egana I (2008) The spatial and temporal variability of fog and its relation to fog oases in the atacama desert, Chile. Atmos. Res. 87:312–323.  https://doi.org/10.1016/j.atmosres.2007.11.012 CrossRefGoogle Scholar
  10. Chen L, Yang G, Wang S (2012) Air-grid surface patterning provided by superhydrophobic surfaces. Small 8:962–965.  https://doi.org/10.1002/smll.201102345 CrossRefGoogle Scholar
  11. Cheng Z, Du M, Fu K, Zhang N, Sun K (2012) pH-controllable water permeation through a nanostructured copper mesh film. ACS Appl Mater Interfaces 4:5826–5832.  https://doi.org/10.1021/am3014746 CrossRefGoogle Scholar
  12. Cheng Z, Du M, Lai H, Zhang N, Sun K (2013) From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion. Nanoscale 5:2776–2783.  https://doi.org/10.1039/C3NR34256E CrossRefGoogle Scholar
  13. Choo S, Choi HJ, Lee H (2015) Water-collecting behavior of nanostructured surfaces with special wettability. Appl Surf Sci 324:563–568.  https://doi.org/10.1016/j.apsusc.2014.10.061 CrossRefGoogle Scholar
  14. Crick CR, Bear JC, Kafizas A, Parkin IP (2012) Superhydrophobic photocatalytic surfaces through direct incorporation of titania nanoparticles into a polymer matrix by aerosol assisted chemical vapor deposition. Adv Mater 24:3505–3508.  https://doi.org/10.1002/adma.201201239 CrossRefGoogle Scholar
  15. Djuma H, Bruggeman A, Eliades M, Lange MA (2016) Non-conventional water resources research in semi-arid countries of the Middle East. Desalination Water Treat 57:2290–2303.  https://doi.org/10.1080/19443994.2014.984930 CrossRefGoogle Scholar
  16. Dorrer C, Rühe J (2008) Mimicking the stenocara beetle-dewetting of drops from a patterned superhydrophobic surface. Langmuir 24:6154–6158.  https://doi.org/10.1021/la800226e CrossRefGoogle Scholar
  17. Falkenmark M, Lundqvist J, Widstrand C (1989) Macro-scale water scarcity requires micro-scale approaches. Nat Resour Forum 13:258–267.  https://doi.org/10.1111/j.1477-8947.1989.tb00348.x CrossRefGoogle Scholar
  18. Gandhidasan P, Abualhamayel HI (2007) Fog collection as a source of freshwater supply in the Kingdom of Saudi Arabia. Water Environ J 21:19–25.  https://doi.org/10.1111/j.1747-6593.2006.00041.x CrossRefGoogle Scholar
  19. Garrod R, Harris LG, Schofield WC, McGettrick J, Ward LJ, Teare DO, Badyal JP (2007) Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir 23:689–693.  https://doi.org/10.1021/la0610856 CrossRefGoogle Scholar
  20. Ge B, Zhang Z, Zhu X, Ren G, Men X, Zhou X (2013) A magnetically superhydrophobic bulk material for oil removal. Eng Aspects 429:129–133.  https://doi.org/10.1016/j.colsurfa.2013.04.004 CrossRefGoogle Scholar
  21. Golovin K, Boban M, Mabry JM, Tuteja A (2017) Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl Mater Interfaces 9:11212.  https://doi.org/10.1021/acsami.6b15491 CrossRefGoogle Scholar
  22. Guadarrama-Cetina J, Mongruel A, Medici MG, Baquero E, Parker AR, Milimouk-Melnytchuk I, González-Viñas W, Beysens D (2014) Dew condensation on desert beetle skin. Eur Phys J E 37:109.  https://doi.org/10.1140/epje/i2014-14109-y CrossRefGoogle Scholar
  23. Gürsoy M, Harris MT, Carletto A, Yaprak AE, Karaman M, Badyal JPS (2017) Bioinspired asymmetric-anisotropic (directional) fog harvesting based on the arid climate plant Eremopyrum orientale. Colloids Surf A 529:959–965.  https://doi.org/10.1016/j.colsurfa.2017.06.065 CrossRefGoogle Scholar
  24. Hu HW, Tang GH, Niu D (2015) Experimental investigation of condensation heat transfer on hybrid wettability finned tube with large amount of noncondensable gas. Int J Heat Mass Transfer 85:513–523.  https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.006 CrossRefGoogle Scholar
  25. Huntley BJ, Siegfried R, Sunter C (1989) South African environments into the 21st Century. Tafelberg, Cape TownGoogle Scholar
  26. Kang SM, You I, Cho WK, Shon HK, Lee TG, Choi IS, Karp JM, Lee H (2010) One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating. Angew Chem Int Ed 49:9401–9404.  https://doi.org/10.1039/C4RA11296B CrossRefGoogle Scholar
  27. Kang HW, Leem J, Sung HJ (2015) Photoinduced synthesis of Ag nanoparticles on ZnO nanowires for real-time SERS systems. RSC Adv 5:51–57.  https://doi.org/10.1002/anie.201004693 CrossRefGoogle Scholar
  28. Kim NK, Kang DH, Eom H, Kang HW (2019) Biomimetic fog harvesting surface by photo-induced micro-patterning of zinc-oxide silver hierarchical nanostructures. Appl Surf Sci 470:161–167.  https://doi.org/10.1016/j.apsusc.2018.11.132 CrossRefGoogle Scholar
  29. Klemm O, Schemenauer RS, Lummerich A, Cereceda P, Marzol V, Corell D, van Heerden J, Reinhard D, Gherezghiher T, Olivier J, Osses P, Sarsour J, Frost E, Estrela MJ, Valiente JA, Fessehaye GM (2012) Fog as a fresh-water resource: overview and perspectives. Ambio 41:221–234.  https://doi.org/10.1007/s13280-012-0247-8 CrossRefGoogle Scholar
  30. Kostal E, Stroj S, Kasemann S, Matylitsky V, Domke M (2018) Fabrication of biomimetic fog-collecting superhydrophilic–superhydrophobic surface micropatterns using femtosecond lasers. Langmuir 34:2933–2941.  https://doi.org/10.1021/acs.langmuir.7b03699 CrossRefGoogle Scholar
  31. Le Boeuf R, de la Jara E (2014) Quantitative goals for large-scale fog collection projects as a sustainable freshwater resource in northern Chile. Water Int 39:431–450.  https://doi.org/10.1080/02508060.2014.923257 CrossRefGoogle Scholar
  32. Lee A, Moon MW, Lim H, Kim W-D, Kim HY (2012) Water harvest via dewing. Langmuir 28:10183–10191.  https://doi.org/10.1021/la3013987 CrossRefGoogle Scholar
  33. Lee SG, Lim HS, Lee DY, Kwak D, Cho K (2013) Tunable anisotropic wettability of rice leaf-like wavy surfaces. Adv Funct Mater 23:547–553.  https://doi.org/10.1002/adfm.201201541 CrossRefGoogle Scholar
  34. Lekouch I, Muselli M, Kabbachi B, Ouazzani J, Melnytchouk-Milimouk I, Beysens D (2011) Dew, fog, and rain as supplementary sources of water in South-Western Morocco. Energy 36:2257–2265.  https://doi.org/10.1016/j.energy.2010.03.017 CrossRefGoogle Scholar
  35. Liao R, Zuo Z, Guo C, Yuan Y, Zhuang A (2014) Fabrication of superhydrophobic surface on aluminum by continuous chemical etching and its anti-icing property. Appl Surf Sci 317:701–709.  https://doi.org/10.1016/j.apsusc.2014.08.187 CrossRefGoogle Scholar
  36. Liu XC, Chakraborty A, Luo C (2010) Fabrication of micropatterns on the sidewalls of a thermal shape memory polystyrene block. J Micromech Microeng 20:095025.  https://doi.org/10.1088/0960-1317/20/9/095025 CrossRefGoogle Scholar
  37. Malik FT, Clement RM, Gethin DT, Krawszik W, Parker AR (2014) Nature’s moisture harvesters: a comparative review. Bioinspir Biomim 9:031002.  https://doi.org/10.1088/1748-3182/9/3/031002 CrossRefGoogle Scholar
  38. Malik F, Clement R, Gethin D, Beysens D, Cohen R, Krawszik W, Parker A (2015) Dew harvesting efficiency of four species of cacti. Bioinspir Biomim 10:036005.  https://doi.org/10.1088/1748-3190/10/3/036005 CrossRefGoogle Scholar
  39. Marzol MV (2005) La Captación del Agua de la Niebla en la Isla de Tenerife. Servicio de Publicaciones de la Caja General de Ahorros de Canarias, Las Palmas de Gran Canaria, SpainGoogle Scholar
  40. McHale G, Newton MI, Shirtcliffe NJ (2010) Immersed superhydrophobic surfaces: gas exchange, slip and drag reduction properties. Soft Matter 6:714.  https://doi.org/10.1039/B917861A CrossRefGoogle Scholar
  41. Medici MG, Mongruel A, Royon L, Beysens D (2014) Edge effects on water droplet condensation. Phys Rev E 90:062403.  https://doi.org/10.1103/PhysRevE.90.062403 CrossRefGoogle Scholar
  42. Miljkovic N, Enright R, Nam Y, Lopez K, Dou N, Sack J, Wang EN (2013) Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett 13:179–187.  https://doi.org/10.1021/nl303835d CrossRefGoogle Scholar
  43. Moazzam P, Tavassoli H, Razmjou A, Warkiani ME, Asadnia M (2018) Mist harvesting using bioinspired polydopamine coating and microfabrication technology. Desalination 429:111–118.  https://doi.org/10.1016/j.desal.2017.12.023 CrossRefGoogle Scholar
  44. Mohammadi R, Wassink J, Amirfazli A (2004) Effect of surfactants on wetting of super-hydrophobic surfaces. Langmuir 20:9657.  https://doi.org/10.1021/la049268k CrossRefGoogle Scholar
  45. Mwenge Kahinda J, Lillie ESB, Taigbenu AE, Taute M, Boroto RJ (2008) Developing suitability maps for rainwater harvesting in South Africa. Phys Chem Earth 33:788–799.  https://doi.org/10.1016/j.pce.2008.06.047 CrossRefGoogle Scholar
  46. Ndayambaje G, Laatikainen K, Laatikainen M, Beukes E, Fatoba O, van der Walt N, Petrik L, Sainio T (2016) Adsorption of nickel(II) on polyacrylonitrile nanofiber modified with 2-(2′-pyridyl)imidazole. Chem Eng J 284:1106–1116.  https://doi.org/10.1016/j.cej.2015.09.065 CrossRefGoogle Scholar
  47. Nørgaard T, Dacke M (2010) Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front Zool 7:23.  https://doi.org/10.1186/1742-9994-7-23 CrossRefGoogle Scholar
  48. Pan Q, Wang M (2009) Miniature boats with striking loading capacity fabricated from superhydrophobic copper meshes. ACS Appl Mater Interfaces 1:420–423.  https://doi.org/10.1021/am800116d CrossRefGoogle Scholar
  49. Park KC, Kim P, Grinthal A, He N, Fox D, Weaver JC, Aizenberg J (2016) Condensation on slippery asymmetric bumps. Nature 531:78–82.  https://doi.org/10.1038/nature16956 CrossRefGoogle Scholar
  50. Parker AR, Lawrence CR (2001) Water capture by a desert beetle. Nature 414:33–34.  https://doi.org/10.1038/35102108 CrossRefGoogle Scholar
  51. Platt AE (1996) Confronting infections diseases. In: Brown LR (ed) State of the world. Earthscan Publications Ltd, London, pp 114–132Google Scholar
  52. Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Nguyen THP, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2013) Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J 104:835–840.  https://doi.org/10.1016/j.bpj.2012.12.046 CrossRefGoogle Scholar
  53. Qadir M, Jiménez GC, Farnum RL, Dodson LL, Smakhtin V (2018) Fog water collection: challenges beyond technology. Water 10:372.  https://doi.org/10.3390/w10040372 CrossRefGoogle Scholar
  54. Rao AV, Latthe SS, Mahadik SA, Kappenstein C (2011) Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate. Appl Surf Sci 257:5772–5776.  https://doi.org/10.1016/j.apsusc.2011.01.099 CrossRefGoogle Scholar
  55. Raut HK, Ganesh VA, Nair AS, Ramakrishna S (2011) Anti-reflective coatings: a critical, in-depth review. Energy Environ Sci 4:3779–3804.  https://doi.org/10.1039/C1EE01297E CrossRefGoogle Scholar
  56. Raut HK, Dinachali SS, He AY, Ganesh VA, Saifullah MS, Law J, Ramakrishna S (2013) Robust and durable polyhedral oligomeric silsesquioxane-based anti-reflective nanostructures with broadband quasi-omnidirectional properties. Energy Environ Sci 6:1929–1937.  https://doi.org/10.1039/C3EE24037A CrossRefGoogle Scholar
  57. Raut HK, Ranganath AS, Baji A, Wood KL (2019) Bio-inspired hierarchical topography for texture driven fog harvesting. Appl Surf Sci 465:362–368.  https://doi.org/10.1016/j.apsusc.2018.09.134 CrossRefGoogle Scholar
  58. Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80:5–22.  https://doi.org/10.1016/j.agwat.2005.07.001 CrossRefGoogle Scholar
  59. Rivera JDD (2011) Aerodynamic collection efficiency of fog water collectors. Atmos Res 102:335–342.  https://doi.org/10.1016/j.atmosres.2011.08.005 CrossRefGoogle Scholar
  60. Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, Stegmaier T, Sarsour J, Linke M, Konrad W (2012) Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface 9:1965–1974.  https://doi.org/10.1098/rsif.2011.0847 CrossRefGoogle Scholar
  61. Sas I, Gorga RE, Joines JA, Thoney KA (2012) Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. J Polym Sci B:Polym Phys 50:824.  https://doi.org/10.1002/polb.23070 CrossRefGoogle Scholar
  62. Schemenauer RS, Cereceda P (1991) Fog-water collection in arid coastal locations. Ambio 20:303–308Google Scholar
  63. Schemenauer RS, Cereceda PA (1994a) Proposed standard fog collector for use in high- elevation regions. J Appl Meteorol 33:1313–1322.  https://doi.org/10.1175/1520-0450 CrossRefGoogle Scholar
  64. Schemenauer RS, Cereceda P (1994b) Fog collection’s role in water planning for developing countries. Wiley Online Lib 18:91–100.  https://doi.org/10.1111/j.1477-8947.1994.tb00879.x CrossRefGoogle Scholar
  65. Schemenauer RS, Joe PI (1989) The collection efficiency of a massive fog collector. Atmos Res 24:53–69.  https://doi.org/10.1016/0169-8095(89)90036-7 CrossRefGoogle Scholar
  66. Seo D, Lee J, Lee C, Nam Y (2016) The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Sci Rep 6:24276.  https://doi.org/10.1038/srep24276 CrossRefGoogle Scholar
  67. Sultan F, Abdulla H, Mohammad MJ, Abdellah SA, Osman AET, Osman T (2017). Fog Harvesting Project in UAE A Research and Design project conducted by the following Final Year Chemical Engineering UAE Students Advised by the Faculty MemberGoogle Scholar
  68. Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, Chen Y (2005) Artificial lotus leaf by nanocasting. Langmuir 21:8978–8981.  https://doi.org/10.1021/la050316q CrossRefGoogle Scholar
  69. Sun M, Watson GS, Zheng Y, Watson JA, Liang A (2009) Wetting properties on nanostructured surfaces of cicada wings. J Exp Biol 212:3148–3155.  https://doi.org/10.1242/jeb.033373 CrossRefGoogle Scholar
  70. Sundaram HS, Cho Y, Dimitriou MD, Weinman CJ, Finlay JA, Cone G, Callow ME, Callow JA, Kramer EJ, Ober CK (2011) Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications. Biofouling 27:589.  https://doi.org/10.1080/08927014.2011.587662 CrossRefGoogle Scholar
  71. Viovy JL, Beysens D, Knobler CM (1988) Scaling description for the growth of condensation patterns on surfaces. Phys Rev A 37:4965–4970.  https://doi.org/10.1103/PhysRevA.37.4965 CrossRefGoogle Scholar
  72. Vogel S, Müller-Doblies U (2011) Desert geophytes under dew and fog: the “curlywhirlies” of Namaqualand, Flora-Morphology, Distribution. Funct Ecol Plants 206:3–31.  https://doi.org/10.1016/j.flora.2010.01.006 CrossRefGoogle Scholar
  73. Wang LF, Dai ZD (2016) Effects of the natural microstructures on the wettability of leaf surfaces. Biosurf Biotribol 2:70–74.  https://doi.org/10.1016/j.bsbt.2016.06.001 CrossRefGoogle Scholar
  74. Wang C, Yao T, Wu J, Ma C, Fan Z, Wang Z, Cheng Y, Lin Q, Yang B (2009) Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation. ACS Appl Mater Interfaces 1:2613–2617.  https://doi.org/10.1021/am900520z CrossRefGoogle Scholar
  75. Wang Y, Zhang L, Wu J, Hedhilib MN, Wang P (2015) A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. J Mater Chem A 3:18963.  https://doi.org/10.1039/C5TA04930J CrossRefGoogle Scholar
  76. Wang Y, Wang X, Lai C, Hu H, Kong Y, Fei B, Xin JH (2016) Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps. ACS Appl Mater Inter 8:2950–2960.  https://doi.org/10.1021/acsami.5b08941 CrossRefGoogle Scholar
  77. Weinman CJ, Finlay JA, Park D, Paik MY, Krishnan S, Sundaram HS, Dimitriou M, Sohn KE, Callow ME, Callow JA, Handlin DL, Willis CL, Kramer EJ, Ober CK (2009) ABC triblock surface active block copolymer with grafted ethoxylated fluoroalkyl amphiphilic side chains for marine antifouling/fouling-release applications. Langmuir 25:12266–12274.  https://doi.org/10.1021/la901654q CrossRefGoogle Scholar
  78. White B, Sarkar A, Kietzig AM (2013) Fog-harvesting inspired by the Stenocara beetle-An analysis of drop collection and removal from biomimetic samples with wetting contrast. Appl Surf Sci 284:826–836.  https://doi.org/10.1016/j.apsusc.2013.08.017 CrossRefGoogle Scholar
  79. World Health Organization, UNICEF (2015) Progress on Sanitation and Drinking Water-2015. Update and MDG Assessment. WHO, GenevaGoogle Scholar
  80. Xiao R, Miljkovic N, Enright R, Wang EN (2013) Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Sci Rep 3:1988.  https://doi.org/10.1038/srep01988 CrossRefGoogle Scholar
  81. Xie H, Huang HX, Mi HY (2018) Gradient wetting state for droplet transportation and efficient fog harvest on nanopillared cicada wing surface. Mater Lett 221:123–127.  https://doi.org/10.1016/j.matlet.2018.03.066 CrossRefGoogle Scholar
  82. Yan YY, Gao N, Barthlott W (2011) Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces. Adv Colloid Interface Sci 169:80–105.  https://doi.org/10.1016/j.cis.2011.08.005 CrossRefGoogle Scholar
  83. You I, Kang SM, Lee S, Cho YO, Kim JB, Lee SB, Nam YS, Lee H (2012) Polydopamine microfluidic system toward a two-dimensional, gravity-driven mixing device. Angew Chem Int Ed 51:6126–6130.  https://doi.org/10.1002/anie.201200329 CrossRefGoogle Scholar
  84. Zhai L, Berg MC, Cebeci FÇ, Kim Y, Milwid JM, Rubner MF, Cohen RE (2006) Patterned superhydrophobic surfaces: toward a synthetic mimic of the Namib Desert beetle. Nano Lett 6:1213–1217.  https://doi.org/10.1021/nl060644q CrossRefGoogle Scholar
  85. Zhang H, Nie H, Yu D, Wu C, Zhang Y, Whithe CJB (2010) Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for romelain adsorption. Desalination 256:141–147.  https://doi.org/10.1016/j.desal.2010.01.026 CrossRefGoogle Scholar
  86. Zhang L, Zhong Y, Cha D, Wang P (2013) A self-cleaning underwater superoleophobic mesh for oil-water separation. Sci Rep 3:2326.  https://doi.org/10.1038/srep02326 CrossRefGoogle Scholar
  87. Zhang L, Wu J, Hedhili MN, Yang X, Wang P (2015) Inkjet printing for direct micropatterning of a superhydrophobic surface: toward biomimetic fog harvesting surfaces. J Mater Chem A 3:2844–2852.  https://doi.org/10.1039/C4TA05862C CrossRefGoogle Scholar
  88. Zhao Y, Luo Y, Zhu J, Li J, Gao X (2015) Copper-based ultrathin nickel nanocone films with high-efficiency dropwise condensation heat transfer performance. ACS Appl Mater Interfaces 7:11719–11723.  https://doi.org/10.1021/acsami.5b03264 CrossRefGoogle Scholar
  89. Zheng Y, Bai H, Huang Z, Tian X, Nie F-Q, Zhao Y, Zhai J, Jiang L (2010) Directional water collection on wetted spider silk. Nature 463:640–643.  https://doi.org/10.1038/nature08729 CrossRefGoogle Scholar
  90. Zhong L, Zhu H, Wu Y, Guo Z (2018) Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges. J Colloid Interface Sci 525:234–242.  https://doi.org/10.1016/j.jcis.2018.04.061 CrossRefGoogle Scholar
  91. Zhu H, Guo Z (2016) Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles. Chem Commun 52:6809–6812.  https://doi.org/10.1039/C6CC01894G CrossRefGoogle Scholar
  92. Zhu J, Luo Y, Tian J, Li J, Gao X (2015) Clustered ribbed-nanoneedle structured copper surfaces with high-efficiency dropwise condensation heat transfer performance. ACS Appl Mater Interfaces 7:10660–10665.  https://doi.org/10.1021/acsami.5b02376 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Karabuk University, Engineering FacultyKarabükTurkey
  2. 2.Erciyes University, Education FacultyKayseriTurkey
  3. 3.Erciyes TeknoparkKayseriTurkey

Personalised recommendations