An overlooked pool of hydrogen stored in humic matter revealed by isotopic exchange: implication for radioactive 3H contamination

  • A-L. Nivesse
  • A. Thibault de Chanvalon
  • N. Baglan
  • G. Montavon
  • G. Granger
  • O. PéronEmail author
Original Paper


Tritium (3H), the radioactive isotope of hydrogen, is a contaminant occurring in most nuclear liquid releases from nuclear industries. The behavior of tritium in the environment is an ongoing societal concern, notably the storage of tritium in organic compounds in waters, soils and sediments. In particular, the fate of tritium depends on the availability of hydrogen for isotopic exchanges in natural organic matter, especially in lignin-like molecules. Therefore, we studied here H exchangeability using natural lignite and leonardite humic matter samples. We compared results from gas–solid isotopic exchanges (αiso) with those from widely used methods of functional group characterization by means of deprotonation (αdepro = αcarboxyl +αphenol +αalcohol). Since standard methods for titrating total acidity and determining protonated carboxyl groups are limited by the unconstrained slow deprotonation of humic material, we have modified methods to maximize exchangeable hydrogen reactivity by extending the reaction time in reagent solutions out to 3 weeks, while total OH groups are investigated by the standard acetylation method for alcohol group determination. Results show that more than two times less hydrogen remains available for deprotonation than for isotopic exchanges with an average of αiso = 35.9% versus αdepro = 15.5%. This finding reveals the existence of a neglected pool of hydrogen likely to play a key role in processes based on hydrogen exchange, such as metal complexation by natural ligands. Results also show the reliability of the isotopic exchange method for hydrogen speciation in soil-type matrices.


Humic substances Soils Isotopic exchanges Deprotonation Organically bound tritium 



This work was financed by CEA and Subatech, by France’s Pays de la Loire Regional Council (under the POLLUSOLS-OSUNA Project) and by EDF.

Supplementary material

10311_2019_946_MOESM1_ESM.docx (100 kb)
Supplementary material 1 (DOCX 100 kb)


  1. Andreux F, Munier-Lamy C (1994) Genèse et propriétés des molécules humiques. In: Bonneau M, Souchier B (eds) Pédologie 2: constituants et propriétés du sol. Editions Masson, ParisGoogle Scholar
  2. Baumgartner F, Donhaerl W (2004) Non-exchangeable organically bound tritium (OBT): its real nature. Anal Bioanal Chem 379(2):204–209. CrossRefGoogle Scholar
  3. Borggaard OK (1974) Experimental conditions concerning potentiometric titration of humic acid. J Soil Sci 25(2):189–195. CrossRefGoogle Scholar
  4. Clapp CE, Hayes MHB, Swift RS (1993) Isolation, fractionation, functionalities, and concepts of structures of soil organic macromolecules. In: Beck AJ et al (eds) Organic substances in Soil and Water: natural constituents and their influences on contaminant behaviour. Royal Society of Chemistry, CambridgeGoogle Scholar
  5. Davis H, Mott CJB (1981) Titrations of fulvic acid fractions I: interactions influencing the dissociation/reprotonation equilibria. J Soil Sci 32(3):379–391. CrossRefGoogle Scholar
  6. Engen JR, Wales TE (2015) Analytical aspects of hydrogen exchange mass spectrometry. Annu Rev Anal Chem 8(1):127–148. CrossRefGoogle Scholar
  7. Eyheraguibel B (2004) Caractérisation des substances humiques biomimétiques—effets sur les végétaux. Ph.D. Thesis, Institut National Polytechnique de ToulouseGoogle Scholar
  8. Eyrolle F, Ducros L, Le Dizès S, Beaugelin-Seiller K, Charmasson S, Boyer P, Cossonnet C (2018) An updated review on tritium in the environment. J Environ Radioact 181:128–137. CrossRefGoogle Scholar
  9. Eyrolle-Boyer F, Boyer P, Claval D, Charmasson S, Cossonnet C (2014) Apparent enrichment of organically bound tritium in rivers explained by the heritage of our past. J Environ Radioact 136:162–168. CrossRefGoogle Scholar
  10. Feng X, Krishnamurthy RV, Epstein S (1993) Determination of DH ratios of nonexchangeable hydrogen in cellulose: a method based on the cellulose–water exchange reaction. Geochim Cosmochim Acta 57(17):4249–4256. CrossRefGoogle Scholar
  11. Fengel D, Wegener G (1984) Wood : chemistry, ultrastructure, reactions, vol 1. Walter de Gruyter, BerlinGoogle Scholar
  12. Flaig W (1988) Generation of model chemical precursors. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment, vol 16. Wiley, New YorkGoogle Scholar
  13. Fleury G (2019) Identification des molécules des acides fulviques impliquées dans la sorption des métaux lourds dans les sols. Ph.D. Thesis, Université de Strasbourg: Institut Pluridisciplinaire Hubert Curien—UMR CNRS 7178Google Scholar
  14. Frilette VJ, Hanle J, Mark H (1948) Rate of exchange of cellulose with heavy water. J Am Chem Soc 70(3):1107–1113CrossRefGoogle Scholar
  15. Gossard P (2001) Contribution à l’étude des intéractions de la matière organique des sols avec les métaux lourds : Etude structurale et analytique de molécules modèles. Ph.D. Thesis, Université des Sciences et Technologies de LilleGoogle Scholar
  16. Hunt GJ, Bailey TA, Jenkinson SB, Leonard KS (2010) Enhancement of tritium concentrations on uptake by marine biota: experience from UK coastal waters. J Radiol Prot 30(1):73–83. CrossRefGoogle Scholar
  17. IAEA-GNIP-database. Global network of isotopes in precipitations.
  18. Kim SB, Baglan N, Davis PA (2013) Current understanding of organically bound tritium (OBT) in the environment. J Environ Radioact 126:83–91. CrossRefGoogle Scholar
  19. Lamar RT, Olk DC, Mayhew L, Bloom PRA (2014) New standardized method for quantification of humic and fulvic acids in humic ores and commercial products. J AOAC Int 97(3):721–730. CrossRefGoogle Scholar
  20. Lichtfouse E, Wehrung P, Albrecht P (1998) Plant wax n-alkanes trapped in soil humin by non-covalent bonds. Die Naturwissenschaften 85(9):449–452. CrossRefGoogle Scholar
  21. Lindh EL, Salmén L (2017) Surface accessibility of cellulose fibrils studied by hydrogen–deuterium exchange with water. Cellulose 24(1):21–33. CrossRefGoogle Scholar
  22. Malm C, Nadeau G, Genung L (1942) Analysis of cellulose derivatives. Analysis of cellulose mixed esters by the partition method. Ind Eng Chem Anal Ed 14(4):292–297. CrossRefGoogle Scholar
  23. Mann J (1971) Deuteration and Titriation. Cellul Cellul Deriv 5(4):89Google Scholar
  24. Marcsisin SR, Engen JR (2010) Hydrogen exchange mass spectrometry: what is it and what can it tell us? Anal Bioanal Chem 397(3):967–972. CrossRefGoogle Scholar
  25. Marks L, Morrell RS (1931) Determination of the carbonyl and aldehyde content of organic compounds: estimation of phenylhydrazine. Analyst 56(665):508. CrossRefGoogle Scholar
  26. Masson M, Siclet F, Fournier M, Gontier G, Bailly du Bois P, Fournier M, Maigret A, Gontier G, Bois PB (2005) Tritium along the French Coast of the English Channel. Radioprotection 40(S1):S621–S627. CrossRefGoogle Scholar
  27. McCubbin D, Leonard KS, Bailey TA, Williams J, Tossell P (2001) Incorporation of organic tritium (3H) by marine organisms and sediment in the Severn Estuary/Bristol channel (UK). Mar Pollut Bull 42(10):852–863. CrossRefGoogle Scholar
  28. Ndira V (2006) Substances humiques du sol et du compost analyse elementaire et groupements atomiques fictifs : vers une approche thermodynamique. Ph.D. Thesis, Institut National Polytechnique de ToulouseGoogle Scholar
  29. Ogg CL, Porter WL, Willits CO (1945) Determining the hydroxyl content of centain organic compounds. Macro-and Semimicromethods. Ind Eng Chem Anal Ed 17(6):394–397. CrossRefGoogle Scholar
  30. Paxéus N, Wedborg M (1985) Acid-base properties of aquatic fulvic acid. Anal Chim Acta 169:87–98. CrossRefGoogle Scholar
  31. Péron O, Fourré E, Pastor L, Gégout C, Reeves B, Lethi HH, Rousseau G, Baglan N, Landesman C, Siclet F, Montavon G (2018) Towards speciation of organically bound tritium and deuterium: quantification of non-exchangeable forms in carbohydrate molecules. Chemosphere 196:120–128. CrossRefGoogle Scholar
  32. Peterson VL, West ES (1927) The volumetric estimation of hydroxyl groups in sugars and other organic compounds. J Biol Chem 74(1):379–383Google Scholar
  33. Reishofer D, Spirk S (2015) Deuterium and cellulose: a comprehensive review. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials, vol 271. Springer, Cham, pp 93–114. CrossRefGoogle Scholar
  34. Richard JF (2002) Caractérisation de substances humiques like- comparison avec des substances humiques naturelles. Ph.D. Thesis., Institut National Polytechnique de ToulouseGoogle Scholar
  35. Ritchie JD, Perdue EM (2008) Analytical constraints on acidic functional groups in humic substances. Org Geochem 39(6):783–799. CrossRefGoogle Scholar
  36. Schnitzer M, Gupta UC (1965) Determination of acidity in soil organic matter 1. Soil Sci Soc Am J 29(3):274. CrossRefGoogle Scholar
  37. Schnitzer M, Skinner IM (1964) Organo-metallic interactions in soils: 4. Carboxyl and hydroxyl groups in organic matter and metal retention. Soil Sci 99(4):278–284CrossRefGoogle Scholar
  38. Schulten HR, Schnitzer M (1992) Structural studies on soil humic acids by curie-point pyrolysis-gas chromatography/mass spectrometry. Soil Sci 153(3):29–30CrossRefGoogle Scholar
  39. Sepall O, Mason SG (1961) Hydrogen exchange between cellulose and water: II. Interconversion of accessible and inaccessible regions. Can J Chem 39(10):1944–1955. CrossRefGoogle Scholar
  40. Showalter M (1993) Structure and function of plant cell wall proteins. Am Soc Plant Physiol 5(1):9–23Google Scholar
  41. Sierra M (2004) Influence of amide linkages on acidity determinations of humic substances testing with model-mixtures. Talanta 62(4):687–693. CrossRefGoogle Scholar
  42. Som M-P (2002) Étude moléculaire des composés organiques de compostformation, transformation dans les solsaction sur les propriétés des sols. 263Google Scholar
  43. Sposito G, Holtzclaw KM, Keech DA (1977) Proton binding in fulvic acid extracted from sewage sludge-soil mixtures 1. Soil Sci Soc Am J 41(6):1119. CrossRefGoogle Scholar
  44. Stevenson FJ (1982) Humus chemistry, genesis, composition, reactions, vol 2. Wiley, New YorkGoogle Scholar
  45. West ES, Hoagland CL, Curtis GH (1934) An improved method for the determination of acetyl values of lipids applicable to hydroxylated fatty acids. J Biol Chem 104(1):627–634Google Scholar
  46. Williams JL, Russ RM, McCubbin D, Knowles JF (2001) An overview of tritium behaviour in the severn Estuary (UK). J Radiol Prot 21(4):337–344. CrossRefGoogle Scholar
  47. Zhu J, Fu Q, Qiu G, Liu Y, Hu H, Huang Q, Violante A (2019) Influence of low molecular weight anionic ligands on the sorption of heavy metals by soil constituents: a review. Environ Chem Lett 17(3):1–10. CrossRefGoogle Scholar
  48. Zolfaghari M, Drogui P, Brar SK, Buelna G, Dubé R (2017) Unwanted metals and hydrophobic contaminants in bioreactor effluents are associated with the presence of humic substances. Environ Chem Lett 15(3):489–494. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.SUBATECH, UMR 6457Nantes Cedex 3France
  2. 2.CEA, DAM, DIFArpajonFrance
  3. 3.CEA, DIF, DRF, JACOB, IRCM, SREIT, LRTArpajonFrance

Personalised recommendations