Advertisement

Environmental Chemistry Letters

, Volume 18, Issue 1, pp 1–52 | Cite as

Zeolitic imidazolate framework membranes for gas and water purification

  • Marzieh S. Mirqasemi
  • Maryam HomayoonfalEmail author
  • Mashallah Rezakazemi
Review

Abstract

Zeolitic imidazolate frameworks (ZIF) have a flexible structure, controllable pore size, and thus adjustable properties, which make them effective materials for membrane separation. They have been used as a pure membrane in about 55% of cases, and as a structure modifier of mixed matrix membranes in other cases. ZIF-based membranes have been applied in pervaporation, nanofiltration, reverse osmosis and gas separation processes. This manuscript reviews the role of ZIF in promoting the membrane performance. A new performance parameter is defined based on permeability and selectivity, in order to compare the results of published reports. Findings show that the presence of ZIF in mixed matrix membranes improves the performances of pervaporation by 70%, nanofiltration by 211%, and reverse osmosis by 30%. ZIF also improved 11 times the membrane performance in gas separation, compared to the raw membrane.

Keywords

Zeolitic imidazolate framework Mixed matrix membrane Gas separation Pervaporation Nanofiltration Reverse osmosis 

Abbreviations

4azBim

4-Azabenzimidazole

4cyIm

4-Cyanoimidazole

4nIm

4-Nitroimidazole

5azBim

5-Azabenzimidazole

5brBim

5(6)-Bromobenzimidazole

5cBim

5-Chlorobenzimidazole

5mBim

5(6)-Methylbenzimidazole

5nBim

5-Nitrobenzimidazole

45cIm

4,5-Dichloroimidazole

56mBim

5,6-Methylbenzimidazole

AFX

Silico-aluminophosphate-fifty-six

aImeIm

4-Methyl-5imidazole-carboxaldehyde

ANA

Analcime

BET SA

Brunauer, Emmett and Teller surface area

BIm

Benzimidazole

CAG

CaGa2O4

CHA

Chabazite

CRB

CrB4

DFT

Davy Faraday Research Laboratory - tow

DIA

Diamond

eIm

2-Ethylimidazole

foIm

Imidazole-2-carboxaldehyde

FRL

Ferey ladder

GAR

Garnet net

GIS

Gismondine

GME

Gmelinite

GPU

Gas permeation unit

Im

Imidazole

KFI

Zeolite Kerr-five

LA SA

Langmuir surface area

LTA

Linde type A

mBim

Methylbenzimidazole

MER

Merlinoite

mIm

2-Methylimidazole

MOZ

Zeolite Socony Mobil-10

NF

Nanofiltration

nIm

2-Nitroimidazole

PSI

Pervaporation separation index

pur

Purine

RO

Reverse osmosis

SOD

Sodalite

TMP

Transmembrane pressure

Vp

Pore volume

ZIF

Zeolitic imidazolate framework

Notes

References

  1. Ahmad N, Bhatnagar S, Ali SS, Dutta R (2015) Phytofabrication of bioinduced silver nanoparticles for biomedical applications. Int J Nanomed 10:7019Google Scholar
  2. Ahmad N, Bhatnagar S, Saxena R, Iqbal D, Ghosh A, Dutta R (2017) Biosynthesis and characterization of gold nanoparticles: kinetics, in vitro and in vivo study. Mater Sci Eng C 78:553–564Google Scholar
  3. Akbari A, Homayoonfal M (2016) Sulfonation and mixing with TiO2 nanoparticles as two simultaneous solutions for reducing fouling of polysulfone loose nanofiltration membrane. Korean J Chem Eng 33:2439–2452.  https://doi.org/10.1007/s11814-016-0107-5 CrossRefGoogle Scholar
  4. Aljundi IH (2017) Desalination characteristics of TFN-RO membrane incorporated with ZIF-8 nanoparticles. Desalination 420:12–20Google Scholar
  5. Amedi HR, Aghajani M (2017) Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application. Microporous Mesoporous Mater 247:124–135Google Scholar
  6. Amedi HR, Aghajani M (2018a) Modified zeolitic–midazolate framework 8/poly(ether-block-amide) mixed-matrix membrane for propylene and propane separation. J Appl Polym Sci 135:46273Google Scholar
  7. Amedi HR, Aghajani M (2018b) Poly urethane mixed matrix membranes for propylene and propane separation. Chem Pap 72:1477–1485Google Scholar
  8. Aroon M, Ismail A, Matsuura T, Montazer-Rahmati M (2010) Performance studies of mixed matrix membranes for gas separation: a review. Sep Purif Technol 75:229–242Google Scholar
  9. Arumugham T, Amimodu RG, Kaleekkal NJ, Rana D (2019) Nano CuO/g-C3N4 sheets-based ultrafiltration membrane with enhanced interfacial affinity, antifouling and protein separation performances for water treatment application. J Environ Sci 82:57–69Google Scholar
  10. Ban Y, Li Y, Liu X, Peng Y, Yang W (2013) Solvothermal synthesis of mixed-ligand metal–organic framework ZIF-78 with controllable size and morphology. Microporous Mesoporous Mater 173:29–36Google Scholar
  11. Ban Y, Li Y, Peng Y, Jin H, Jiao W, Liu X, Yang W (2014) Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties. Chem Eur J 20:11402–11409Google Scholar
  12. Ban Y, Li Z, Li Y, Peng Y, Jin H, Jiao W, Guo A, Wang P, Yang Q, Zhong C (2015) Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angew Chem Int Ed 54:15483–15487Google Scholar
  13. Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’keeffe M, Yaghi OM (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943Google Scholar
  14. Basu S, Balakrishnan M (2017) Polyamide thin film composite membranes containing ZIF-8 for the separation of pharmaceutical compounds from aqueous streams. Sep Purif Technol 179:118–125Google Scholar
  15. Bhattacharjee S, Jang M-S, Kwon H-J, Ahn W-S (2014) Zeolitic imidazolate frameworks: synthesis, functionalization, and catalytic/adsorption applications. Catal Surv Asia 18:101–127Google Scholar
  16. Bushell AF, Attfield MP, Mason CR, Budd PM, Yampolskii Y, Starannikova L, Rebrov A, Bazzarelli F, Bernardo P, Jansen JC (2013) Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J Membr Sci 427:48–62Google Scholar
  17. Bux H, Liang F, Li Y, Cravillon J, Wiebcke M, Jr Caro (2009) Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J Am Chem Soc 131:16000–16001Google Scholar
  18. Bux H, Chmelik C, Krishna R, Caro J (2011a) Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion. J Membr Sci 369:284–289Google Scholar
  19. Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y-S, Caro J (2011b) Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem Mater 23:2262–2269Google Scholar
  20. Cacho-Bailo F, Seoane B, Téllez C, Coronas J (2014) ZIF-8 continuous membrane on porous polysulfone for hydrogen separation. J Membr Sci 464:119–126Google Scholar
  21. Chen B, Yang Z, Zhu Y, Xia Y (2014) Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J Mater Chem A 2:16811–16831Google Scholar
  22. Cheng X, Jiang Z, Cheng X, Yang H, Tang L, Liu G, Wang M, Wu H, Pan F, Cao X (2018) Water-selective permeation in hybrid membrane incorporating multi-functional hollow ZIF-8 nanospheres. J Membr Sci 555:146–156Google Scholar
  23. Chi WS, Hwang S, Lee S-J, Park S, Bae Y-S, Ryu DY, Kim JH, Kim J (2015) Mixed matrix membranes consisting of SEBS block copolymers and size-controlled ZIF-8 nanoparticles for CO2 capture. J Membr Sci 495:479–488Google Scholar
  24. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M (2011) Controlling zeolitic imidazolate framework nano-and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem Mater 23:2130–2141Google Scholar
  25. Dai Y, Johnson J, Karvan O, Sholl DS, Koros W (2012) Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. J Membr Sci 401:76–82Google Scholar
  26. Dong X, Huang K, Liu S, Ren R, Jin W, Lin Y (2012) Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: defect formation and elimination. J Mater Chem 22:19222–19227Google Scholar
  27. Duan J, Pan Y, Pacheco F, Litwiller E, Lai Z, Pinnau I (2015) High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J Membr Sci 476:303–310Google Scholar
  28. Duke MC, Zhu B, Doherty CM, Hill MR, Hill AJ, Carreon MA (2016) Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination 377:128–137Google Scholar
  29. Etxeberria-Benavides M, David O, Johnson T, Łozińska MM, Orsi A, Wright PA, Mastel S, Hillenbrand R, Kapteijn F, Gascon J (2018) High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. J Membr Sci 550:198–207Google Scholar
  30. Eum K, Ma C, Koh DY, Rashidi F, Li Z, Jones CW, Lively RP, Nair S (2017) Zeolitic imidazolate framework membranes supported on macroporous carbon hollow fibers by fluidic processing techniques. Adv Mater Interfaces 4:1700080Google Scholar
  31. Fairen-Jimenez D, Moggach S, Wharmby M, Wright P, Parsons S, Duren T (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902Google Scholar
  32. Fan L, Xue M, Kang Z, Li H, Qiu S (2012) Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. J Mater Chem 22:25272–25276Google Scholar
  33. Fan H, Shi Q, Yan H, Ji S, Dong J, Zhang G (2014) Simultaneous spray self-assembly of highly loaded ZIF-8–PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angew Chem Int Ed 53:5578–5582Google Scholar
  34. Fathizadeh M, Tien HN, Khivantsev K, Song Z, Zhou F, Yu M (2019) Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination. Desalination 451:125–132Google Scholar
  35. Fazlifard S, Mohammadi T, Bakhtiari O (2017) Chitosan/ZIF-8 mixed-matrix membranes for pervaporation dehydration of isopropanol. Chem Eng Technol 40:648–655Google Scholar
  36. Feng X, Huang RY (1997) Liquid separation by membrane pervaporation: a review. Ind Eng Chem Res 36:1048–1066Google Scholar
  37. Ge J, Cui Y, Yan Y, Jiang W (2000) The effect of structure on pervaporation of chitosan membrane. J Membr Sci 165:75–81Google Scholar
  38. Ge L, Du A, Hou M, Rudolph V, Zhu Z (2012a) Enhanced hydrogen separation by vertically-aligned carbon nanotube membranes with zeolite imidazolate frameworks as a selective layer. RSC Adv 2:11793–11800Google Scholar
  39. Ge L, Zhou W, Du A, Zhu Z (2012b) Porous polyethersulfone-supported zeolitic imidazolate framework membranes for hydrogen separation. J Phys Chem C 116:13264–13270Google Scholar
  40. Ghazali M, Nawawi M, Huang RY (1997) Pervaporation dehydration of isopropanol with chitosan membranes. J Membr Sci 124:53–62Google Scholar
  41. Ghezelgheshlaghi S, Mehrnia MR, Homayoonfal M, Montazer-Rahmati MM (2017) Al2O3/poly acrylonitrile nanocomposite membrane: from engineering design of pores to efficient biological macromolecules separation. J Porous Mater 25:1161–1181.  https://doi.org/10.1007/s10934-017-0527-6 CrossRefGoogle Scholar
  42. Gholami M, Mohammadi T, Mosleh S, Hemmati M (2017) CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chem Pap 71:1839–1853Google Scholar
  43. Go Y, Lee JH, Shamsudin IK, Kim J, Othman MR (2016) Microporous ZIF-7 membranes prepared by in situ growth method for hydrogen separation. Int J Hydrogen Energy 41:10366–10373Google Scholar
  44. Hara N, Yoshimune M, Negishi H, Haraya K, Hara S, Yamaguchi T (2014) Diffusive separation of propylene/propane with ZIF-8 membranes. J Membr Sci 450:215–223Google Scholar
  45. He M, Yao J, Li L, Zhong Z, Chen F, Wang H (2013) Aqueous solution synthesis of ZIF-8 films on a porous nylon substrate by contra-diffusion method. Microporous Mesoporous Mater 179:10–16Google Scholar
  46. Hebbar RS, Isloor AM, Asiri AM (2017) Carbon nanotube-and graphene-based advanced membrane materials for desalination. Environ Chem Lett 15:643–671Google Scholar
  47. Huang A, Caro J (2011) Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angew Chem Int Ed 50:4979–4982Google Scholar
  48. Huang R, Yeom C (1991) Pervaporation separation of aqueous mixtures using crosslinked polyvinyl alcohol membranes. III. Permeation of acetic acid-water mixtures. J Membr Sci 58:33–47Google Scholar
  49. Huang A, Chen Y, Wang N, Hu Z, Jiang J, Caro J (2012a) A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chem Commun 48:10981–10983Google Scholar
  50. Huang A, Wang N, Kong C, Caro J (2012b) Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. Angew Chem Int Ed 51:10551–10555Google Scholar
  51. Huang A, Liu Q, Wang N, Caro J (2014a) Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation. Microporous Mesoporous Mater 192:18–22Google Scholar
  52. Huang A, Liu Q, Wang N, Zhu Y, Jr Caro (2014b) Bicontinuous zeolitic imidazolate framework ZIF-8@ GO membrane with enhanced hydrogen selectivity. J Am Chem Soc 136:14686–14689Google Scholar
  53. Hwang S, Chi WS, Lee SJ, Im SH, Kim JH, Kim J (2015) Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation. J Membr Sci 480:11–19Google Scholar
  54. Jang E, Kim E, Kim H, Lee T, Yeom H-J, Kim Y-W, Choi J (2017) Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability. J Membr Sci 540:430–439Google Scholar
  55. Javdaneh S, Mehrnia MR, Homayoonfal M (2016a) Engineering design of a biofilm formed on a pH-sensitive ZnO/PSf nanocomposite membrane with antibacterial properties. RSC Adv 6:112269–112281Google Scholar
  56. Javdaneh S, Mehrnia MR, Homayoonfal M (2016b) Fabrication of polysulfone/zinc oxide nanocomposite membrane: investigation of pore forming agent on fouling behavior. Korean J Chem Eng 33:3184–3193Google Scholar
  57. Jin H, Mo K, Wen F, Li Y (2019) Preparation and pervaporation performance of CAU-10-H MOF membranes. J Membr Sci 577:129–136Google Scholar
  58. Jomekian A, Behbahani RM, Mohammadi T, Kargari A (2017) High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean J Chem Eng 34:440–453Google Scholar
  59. Joshi R, Alwarappan S, Yoshimura M, Sahajwalla V, Nishina Y (2015) Graphene oxide: the new membrane material. Appl Mater Today 1:1–12Google Scholar
  60. Jyothi M, Reddy KR, Soontarapa K, Naveen S, Raghu AV, Kulkarni RV, Suhas D, Shetti NP, Nadagouda MN, Aminabhavi TM (2019) Membranes for dehydration of alcohols via pervaporation. J Environ Manage 242:415–429Google Scholar
  61. Karimi A, Vatanpour V, Khataee A, Safarpour M (2019) Contra-diffusion synthesis of ZIF-8 layer on polyvinylidene fluoride ultrafiltration membranes for improved water purification. J Ind Eng Chem 73:95–105Google Scholar
  62. Knebel A, Wulfert-Holzmann P, Friebe S, Pavel J, Strauß I, Mundstock A, Steinbach F, Caro J (2018) Hierarchical nanostructures of metal–organic frameworks applied in gas separating ZIF-8-on-ZIF-67 membranes. Chem Eur J 24:5728–5733Google Scholar
  63. Kudasheva A, Sorribas S, Zornoza B, Téllez C, Coronas J (2015) Pervaporation of water/ethanol mixtures through polyimide based mixed matrix membranes containing ZIF-8, ordered mesoporous silica and ZIF-8-silica core-shell spheres. J Chem Technol Biotechnol 90:669–677Google Scholar
  64. Kwon HT, Jeong H-K (2013) Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem Commun 49:3854–3856Google Scholar
  65. Lai LS, Yeong YF, Lau KK, Shariff AM (2017a) Single and binary CO2/CH4 separation of a zeolitic imidazolate framework-8 membrane. Chem Eng Technol 40:1031–1042Google Scholar
  66. Lai LS, Yeong YF, Lau KK, Shariff AM (2017b) Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO2 from natural gas. J Chem Technol Biotechnol 92:420–431Google Scholar
  67. Lee MJ, Hamid MRA, Lee J, Kim JS, Lee YM, Jeong H-K (2018a) Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation. J Membr Sci 559:28–34Google Scholar
  68. Lee MJ, Kwon HT, Jeong HK (2018b) High-flux zeolitic imidazolate framework membranes for propylene/propane separation by postsynthetic linker exchange. Angew Chem 130:162–167Google Scholar
  69. Li Y, Liang F, Bux H, Yang W, Caro J (2010a) Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J Membr Sci 354:48–54Google Scholar
  70. Li YS, Liang FY, Bux H, Feldhoff A, Yang WS, Caro J (2010b) Molecular sieve membrane: supported metal–organic framework with high hydrogen selectivity. Angew Chem Int Ed 49:548–551Google Scholar
  71. Li L, Yao J, Chen R, He L, Wang K, Wang H (2013) Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis. Microporous Mesoporous Mater 168:15–18Google Scholar
  72. Li L, Yao J, Wang X, Cheng YB, Wang H (2014) ZIF-11/polybenzimidazole composite membrane with improved hydrogen separation performance. J Appl Polym Sci.  https://doi.org/10.1002/app.41056 CrossRefGoogle Scholar
  73. Li Y, Wee LH, Volodin A, Martens JA, Vankelecom IF (2015) Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method. Chem Commun 51:918–920Google Scholar
  74. Li Y, Wee LH, Martens JA, Vankelecom IF (2017) Interfacial synthesis of ZIF-8 membranes with improved nanofiltration performance. J Membr Sci 523:561–566Google Scholar
  75. Liu Y, Hu E, Khan EA, Lai Z (2010) Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. J Membr Sci 353:36–40Google Scholar
  76. Liu Y, Zeng G, Pan Y, Lai Z (2011) Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties. J Membr Sci 379:46–51Google Scholar
  77. Liu Q, Wang N, Jr Caro, Huang A (2013) Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. J Am Chem Soc 135:17679–17682Google Scholar
  78. Liu D, Ma X, Xi H, Lin Y (2014) Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J Membr Sci 451:85–93Google Scholar
  79. Madhura L, Kanchi S, Sabela MI, Singh S, Bisetty K (2018) Membrane technology for water purification. Environ Chem Lett 16:343–365Google Scholar
  80. Marti AM, Wickramanayake W, Dahe G, Sekizkardes A, Bank TL, Hopkinson DP, Venna SR (2017) Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO2 capture. ACS Appl Mater Interfaces 9:5678–5682Google Scholar
  81. McCarthy MC, Varela-Guerrero V, Barnett GV, Jeong H-K (2010) Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 26:14636–14641Google Scholar
  82. Mehrnia MR, Homayoonfal M (2016) Fouling mitigation behavior of magnetic responsive nanocomposite membranes in a magnetic membrane bioreactor. J Membr Sci 520:881–894.  https://doi.org/10.1016/j.memsci.2016.08.046 CrossRefGoogle Scholar
  83. Mehrnia MR, Mojtahedi YM, Homayoonfal M (2015) What is the concentration threshold of nanoparticles within the membrane structure? A case study of Al2O3/PSf nanocomposite membrane. Desalination 372:75–88.  https://doi.org/10.1016/j.desal.2015.06.022 CrossRefGoogle Scholar
  84. Melgar VMA, Kwon HT, Kim J (2014) Direct spraying approach for synthesis of ZIF-7 membranes by electrospray deposition. J Membr Sci 459:190–196Google Scholar
  85. Melgar VMA, Kim J, Othman MR (2015) Zeolitic imidazolate framework membranes for gas separation: a review of synthesis methods and gas separation performance. J Ind Eng Chem 28:1–15Google Scholar
  86. Milburn K 2000 Synthesis and characterization of ZIF-8 and ZIF-8/polymer composites. University of LiverpoolGoogle Scholar
  87. Mishra RK, Mishra P, Verma K, Mondal A, Chaudhary RG, Abolhasani MM, Loganathan S (2018) Electrospinning production of nanofibrous membranes. Environ Chem Lett 17:767–800Google Scholar
  88. Monsef K, Homayoonfal M, Davar F (2018) Coating carboxylic and sulfate functional groups on ZrO2 nanoparticles: antifouling enhancement of nanocomposite membranes during water treatment. React Funct Polym 131:299–314Google Scholar
  89. Mosleh S, Khanbabaei G, Mozdianfard M, Hemmati M (2016) Application of poly(amide-b-ethylene oxide)/zeolitic imidazolate framework nanocomposite membrane in gas separation. Iran Polym J 25:977–990Google Scholar
  90. Nguyen NT, Furukawa H, Gándara F, Nguyen HT, Cordova KE, Yaghi OM (2014) Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. Angew Chem Int Ed 53:10645–10648Google Scholar
  91. Nigiz FU (2018) Complete desalination of seawater using a novel polyvinylidene fluoride/zeolite membrane. Environ Chem Lett 16:553–559Google Scholar
  92. Noh K, Lee J, Kim J (2018) Compositions and structures of zeolitic imidazolate frameworks. Isr J Chem 58:1075–1088Google Scholar
  93. Noormohamadi A, Homayoonfal M, Mehrnia MR, Davar F (2017) Synergistic effect of concurrent presence of zirconium oxide and iron oxide in the form of core-shell nanoparticles on the performance of Fe3O4@ ZrO2/PAN nanocomposite membrane. Ceram Int 43:17174–17185Google Scholar
  94. Noormohamadi A, Homayoonfal M, Mehrnia MR, Davar F (2019) Employing magnetism of Fe3O4 and hydrophilicity of ZrO2 to mitigate biofouling in magnetic MBR by Fe3O4-coated ZrO2/PAN nanocomposite membrane. Environ Technol.  https://doi.org/10.1080/09593330.2019.1579870 CrossRefGoogle Scholar
  95. Nordin NAHM, Ismail AF, Mustafa A, Murali RS, Matsuura T (2015a) Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Adv 5:30206–30215Google Scholar
  96. Nordin NAHM, Racha SM, Matsuura T, Misdan N, Sani NAA, Ismail AF, Mustafa A (2015b) Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: synthesis and preparation. RSC Adv 5:43110–43120Google Scholar
  97. Nune SK, Thallapally PK, Dohnalkova A, Wang C, Liu J, Exarhos GJ (2010) Synthesis and properties of nano zeolitic imidazolate frameworks. Chem Commun 46:4878–4880Google Scholar
  98. Pan Y, Lai Z (2011) Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem Commun 47:10275–10277Google Scholar
  99. Pan Y, Li T, Lestari G, Lai Z (2012a) Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J Membr Sci 390:93–98Google Scholar
  100. Pan Y, Wang B, Lai Z (2012b) Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. J Membr Sci 421:292–298Google Scholar
  101. Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci 103:10186–10191Google Scholar
  102. Paul DR (2018) Polymeric gas separation membranes. CRC Press, Boca RatonGoogle Scholar
  103. Peralta D, Chaplais G, Simon-Masseron A, Barthelet K, Pirngruber GD (2012) Synthesis and adsorption properties of ZIF-76 isomorphs. Microporous Mesoporous Mater 153:1–7Google Scholar
  104. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’keeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res 43:58–67Google Scholar
  105. Pimentel BR, Parulkar A, Ek Zhou, Brunelli NA, Lively RP (2014) Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations. Chemsuschem 7:3202–3240Google Scholar
  106. Ramu G, Lee M, Jeong H-K (2018) Effects of zinc salts on the microstructure and performance of zeolitic-imidazolate framework ZIF-8 membranes for propylene/propane separation. Microporous Mesoporous Mater 259:155–162Google Scholar
  107. Rezakazemi M, Dashti A, Harami HR, Hajilari N (2018) Fouling-resistant membranes for water reuse. Environ Chem Lett 16:715–763Google Scholar
  108. Sampranpiboon P, Jiraratananon R, Uttapap D, Feng X, Huang R (2000) Pervaporation separation of ethyl butyrate and isopropanol with polyether block amide (PEBA) membranes. J Membr Sci 173:53–59Google Scholar
  109. Sánchez-Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C (2016) Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO2 capture and its validation through interlaboratory test. J Membr Sci 515:45–53Google Scholar
  110. Sánchez-Laínez J, Friebe S, Zornoza B, Mundstock A, Strauß I, Téllez C, Caro J, Coronas J (2018a) Polymer-stabilized percolation membranes based on nanosized zeolitic imidazolate frameworks for H2/CO2 separation. ChemNanoMat 4:698–703Google Scholar
  111. Sánchez-Laínez J, Paseta L, Navarro M, Zornoza B, Téllez C, Coronas J (2018b) Ultrapermeable thin film ZIF-8/polyamide membrane for H2/CO2 separation at high temperature without using sweep gas. Adv Mater Interfaces 5:1800647Google Scholar
  112. Sánchez-Laínez J, Zornoza B, Orsi AF, Łozińska MM, Dawson DM, Ashbrook SE, Francis SM, Wright PA, Benoit V, Llewellyn PL (2018c) Synthesis of ZIF-93/11 hybrid nanoparticles via post-synthetic modification of ZIF-93 and their use for H2/CO2 separation. Chem Eur J 24:11211–11219Google Scholar
  113. Sarfraz M, Ba-Shammakh M (2016) Combined effect of CNTs with ZIF-302 into polysulfone to fabricate MMMs for enhanced CO2 separation from flue gases. Arab J Sci Eng 41:2573–2582Google Scholar
  114. Sarfraz M, Ba-Shammakh M (2018a) Pursuit of efficient CO2-capture membranes: graphene oxide-and MOF-integrated Ultrason® membranes. Polym Bull 75:5039–5059Google Scholar
  115. Sarfraz M, Ba-Shammakh M (2018b) ZIF-based water-stable mixed-matrix membranes for effective CO2 separation from humid flue gas. Can J Chem Eng 96:2475–2483Google Scholar
  116. Shamsaei E, Lin X, Low Z-X, Abbasi Z, Hu Y, Liu JZ, Wang H (2016) Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl Mater Interfaces 8:6236–6244Google Scholar
  117. Shieh FK, Wang SC, Leo SY, Wu KCW (2013) Water-based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chem Eur J 19:11139–11142Google Scholar
  118. Song Q, Nataraj S, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtaseb SA (2012) Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 5:8359–8369Google Scholar
  119. Tanh Jeazet HB, Sorribas S, Román-Marín JM, Zornoza B, Téllez C, Coronas J, Janiak C (2016) Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8. Eur J Inorg Chem 2016:4363–4367Google Scholar
  120. Tao K, Cao L, Lin Y, Kong C, Chen L (2013a) A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding. J Mater Chem A 1:13046–13049Google Scholar
  121. Tao K, Kong C, Chen L (2013b) High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition. Chem Eng J 220:1–5Google Scholar
  122. Thompson JA, Blad CR, Brunelli NA, Lydon ME, Lively RP, Jones CW, Nair S (2012) Hybrid zeolitic imidazolate frameworks: controlling framework porosity and functionality by mixed-linker synthesis. Chem Mater 24:1930–1936Google Scholar
  123. Wang L, Fang M, Liu J, He J, Li J, Lei J (2015) Layer-by-layer fabrication of high-performance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications. ACS Appl Mater Interfaces 7:24082–24093Google Scholar
  124. Wang J-W, Li N-X, Li Z-R, Wang J-R, Xu X, Chen C-S (2016a) Preparation and gas separation properties of zeolitic imidazolate frameworks-8 (ZIF-8) membranes supported on silicon nitride ceramic hollow fibers. Ceram Int 42:8949–8954Google Scholar
  125. Wang J, Wang Y, Zhang Y, Uliana A, Zhu J, Liu J, Van der Bruggen B (2016b) Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance. ACS Appl Mater Interfaces 8:25508–25519Google Scholar
  126. Wang N, Li X, Wang L, Zhang L, Zhang G, Ji S (2016c) Nanoconfined zeolitic imidazolate framework membranes with composite layers of nearly zero thickness. ACS Appl Mater Interfaces 8:21979–21983Google Scholar
  127. Wang N, Liu T, Shen H, Ji S, Li JR, Zhang R (2016d) Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration. AIChE J 62:538–546Google Scholar
  128. Wen Y, Yuan J, Ma X, Wang S, Liu Y (2019) Polymeric nanocomposite membranes for water treatment: a review. Environ Chem Lett.  https://doi.org/10.1007/s10311-019-00895-9 CrossRefGoogle Scholar
  129. Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y (2017) Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO2/CH4 separation. Adv Mater 29:1606999Google Scholar
  130. Xie Z, Yang J, Wang J, Bai J, Yin H, Yuan B, Lu J, Zhang Y, Zhou L, Duan C (2012) Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube. Chem Commun 48:5977–5979Google Scholar
  131. Xu G, Yao J, Wang K, He L, Webley PA, Chen C-s, Wang H (2011) Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel. J Membr Sci 385:187–193Google Scholar
  132. Yang T, Chung T-S (2013a) High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. Int J Hydrogen Energy 38:229–239Google Scholar
  133. Yang T, Chung T-S (2013b) Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation. J Mater Chem A 1:6081–6090Google Scholar
  134. Yang T, Shi GM, Chung TS (2012) Symmetric and asymmetric zeolitic imidazolate frameworks (ZIF)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures. Adv Energy Mater 2:1358–1367Google Scholar
  135. Yang J, Zhang Y-B, Liu Q, Trickett CA, Gutiérrez-Puebla E, Monge MA, Cong H, Aldossary A, Deng H, Yaghi OM (2017a) Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks. J Am Chem Soc 139:6448–6455Google Scholar
  136. Yang L, Wang Z, Zhang J (2017b) Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal. J Membr Sci 532:76–86Google Scholar
  137. Yang H, Wang N, Wang L, Liu H-X, An Q-F, Ji S (2018) Vacuum-assisted assembly of ZIF-8@ GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance. J Membr Sci 545:158–166Google Scholar
  138. Yao J, Wang H (2014) Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications. Chem Soc Rev 43:4470–4493Google Scholar
  139. Yao J, Dong D, Li D, He L, Xu G, Wang H (2011) Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem Commun 47:2559–2561Google Scholar
  140. Yao J, He M, Wang K, Chen R, Zhong Z, Wang H (2013) High-yield synthesis of zeolitic imidazolate frameworks from stoichiometric metal and ligand precursor aqueous solutions at room temperature. CrystEngComm 15:3601–3606Google Scholar
  141. Yuan J, Li Q, Shen J, Huang K, Liu G, Zhao J, Duan J, Jin W (2017) Hydrophobic-functionalized ZIF-8 nanoparticles incorporated PDMS membranes for high-selective separation of propane/nitrogen. Asia-Pac J Chem Eng 12:110–120Google Scholar
  142. Yumru AB, Safak Boroglu M, Boz I (2018) ZIF-11/Matrimid® mixed matrix membranes for efficient CO2, CH4, and H2 separations. Greenh Gases Sci Technol 8:529–541Google Scholar
  143. Zhang H, Wang Y (2016) Poly(vinyl alcohol)/ZIF-8-NH2 mixed matrix membranes for ethanol dehydration via pervaporation. AIChE J 62:1728–1739Google Scholar
  144. Zhang C, Xiao Y, Liu D, Yang Q, Zhong C (2013a) A hybrid zeolitic imidazolate framework membrane by mixed-linker synthesis for efficient CO2 capture. Chem Commun 49:600–602Google Scholar
  145. Zhang X, Liu Y, Kong L, Liu H, Qiu J, Han W, Weng L-T, Yeung KL, Zhu W (2013b) A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. J Mater Chem A 1:10635–10638Google Scholar
  146. Zhang C, Zhang K, Xu L, Labreche Y, Kraftschik B, Koros WJ (2014a) Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J 60:2625–2635Google Scholar
  147. Zhang X, Liu Y, Li S, Kong L, Liu H, Li Y, Han W, Yeung KL, Zhu W, Yang W (2014b) New membrane architecture with high performance: ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation. Chem Mater 26:1975–1981Google Scholar
  148. Zhao S, Cao X, Ma Z, Wang Z, Qiao Z, Wang J, Wang S (2015) Mixed-matrix membranes for CO2/N2 separation comprising a poly(vinylamine) matrix and metal–organic frameworks. Ind Eng Chem Res 54:5139–5148Google Scholar
  149. Zhu Y, Gupta KM, Liu Q, Jiang J, Caro J, Huang A (2016) Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination 385:75–82Google Scholar
  150. Zornoza B, Seoane B, Zamaro JM, Téllez C, Coronas J (2011) Combination of MOFs and zeolites for mixed-matrix membranes. ChemPhysChem 12:2781–2785Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering, College of EngineeringUniversity of IsfahanIsfahanIran
  2. 2.Faculty of Chemical and Materials EngineeringShahrood University of TechnologyShahroodIran

Personalised recommendations