Advertisement

Environmental Chemistry Letters

, Volume 18, Issue 1, pp 129–150 | Cite as

Water monitoring using polymer inclusion membranes: a review

  • Bambang KuswandiEmail author
  • Fidelis Nitti
  • M. Inês G. S. Almeida
  • Spas D. Kolev
Review

Abstract

Water monitoring by conventional analytical methods is often complicated, time-consuming and laborious, requiring highly skilled personnel, thus calling for simpler, rapid and cost-effective methods. Polymer inclusion membranes (PIM) are of interest in environmental analysis due to their selectivity and sensitivity for the detection of a wide range of analytes such as metals. PIM have been used in the development of passive sampling, analyte separation and preconcentration, and sensing. PIM are also suitable for the automation of chemical analysis. Here we review PIM applications in environmental water monitoring.

Keywords

Polymer inclusion membranes (PIMs) Passive sampling Sample pretreatment Sensors Environmental water monitoring 

Notes

Acknowledgements

The authors thank the NDT programme of IDB Project 2018 of the University of Jember Indonesia and World Class Professor (WCP) Scheme B 2019, No. T/50/D2.3/KK.04.05/2019, Ministry of Research, Technology and Higher Education, Republic of Indonesia, for providing fellowship to BK to visit Kolev Group at the School of Chemistry, The University of Melbourne.

References

  1. Absalan G, Asadi M, Kamran S, Sheikhian L (2010) Design of a cyanide ion optode based on immobilization of a new Co(III) Schiff base complex on triacetylcellulose membrane using room temperature ionic liquids as modifiers. Sensors Actuators B Chem 147:31–36.  https://doi.org/10.1016/J.SNB.2010.03.013 CrossRefGoogle Scholar
  2. Albero MI, Ortuno JA, Garcia MS, Sanchez-Pedreno C, Exposito R (2002) Determination of zinc (II) in pharmaceuticals based on a flow-through bulk optode. J Pharm Biomed Anal 29:779–786.  https://doi.org/10.1016/S0731-7085(02)00173-5 CrossRefGoogle Scholar
  3. Almeida MIGS, Cattrall RW, Kolev SD (2012) Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J Membr Sci 415–416:9–23.  https://doi.org/10.1016/J.MEMSCI.2012.06.006 CrossRefGoogle Scholar
  4. Almeida MIGS, Chan C, Pettigrove VJ, Cattrall RW, Kolev SD (2014) Development of a passive sampler for Zinc(II) in urban pond waters using a polymer inclusion membrane. Environ Pollut 193:233–239.  https://doi.org/10.1016/J.ENVPOL.2014.06.040 CrossRefGoogle Scholar
  5. Almeida MIGS, Silva AML, Coleman RA, Pettigrove VJ, Cattrall RW, Kolev SD (2016) Development of a passive sampler based on a polymer inclusion membrane for total ammonia monitoring in freshwaters. Anal Bioanal Chem 408:3213–3222.  https://doi.org/10.1007/s00216-016-9394-2 CrossRefGoogle Scholar
  6. Almeida MIGS, Cattrall RW, Kolev SD (2017) Polymer inclusion membranes (PIMs) in chemical analysis - A review. Anal Chim Acta 987:1–14.  https://doi.org/10.1016/j.aca.2017.07.032 CrossRefGoogle Scholar
  7. Almeida MIGS, Jayawardane BM, Kolev SD, McKelvie ID (2018) Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: a review. Talanta 177:176–190.  https://doi.org/10.1016/j.talanta.2017.08.072 CrossRefGoogle Scholar
  8. Annane K, Sahmoune A, Montels P, Tingry S (2015) Polymer inclusion membrane extraction of cadmium(II) with Aliquat 336 in micro-channel cell. Chem Eng Res Des 94:605–610.  https://doi.org/10.1016/J.CHERD.2014.10.004 CrossRefGoogle Scholar
  9. Arslan G, Yılmaz A, Tor A, Ersoz M (2017) Preparation of polymer inclusion membrane with sodium diethyldithiocarbamate as a carrier reagent for selective transport of zinc ions. Desalin WaterTreat 75:348–356.  https://doi.org/10.5004/dwt.2017.20485 CrossRefGoogle Scholar
  10. Baczyńska M, Regel-Rosocka M, Nowicki M, Wiśniewski M (2015) Effect of the structure of polymer inclusion membranes on Zn(II) transport from chloride aqueous solutions. J Appl Polym Sci 132:42319.  https://doi.org/10.1002/app.42319 CrossRefGoogle Scholar
  11. Baczyńska M, Waszak M, Nowicki M, Regel-Rosocka M (2018) Characterization of polymer inclusion membranes (PIMs) containing phosphonium ionic liquids as Zn(II) carriers. Ind Eng Chem Res 57:5070–5082.  https://doi.org/10.1021/acs.iecr.7b04685 CrossRefGoogle Scholar
  12. Baczynska M, Rzelewska M, Magdalena R-R, Wisniewski M (2016) Transport of iron ions from chloride solutions using cellulose triacetate matrix inclusion membranes with an ionic liquid carrier. Chem Pap 70:172–179.  https://doi.org/10.1515/chempap-2015-0198 CrossRefGoogle Scholar
  13. Bakker E (2014) Enhancing ion-selective polymeric membrane electrodes by instrumental control. TrAC Trends Anal Chem 53:98–105.  https://doi.org/10.1016/J.TRAC.2013.09.014 CrossRefGoogle Scholar
  14. Bakker E, Pretsch E (2005) Potentiometric sensors for trace-level analysis. TrAC Trends Anal Chem 24:199–207.  https://doi.org/10.1016/J.TRAC.2005.01.003 CrossRefGoogle Scholar
  15. Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics Chem Rev 97:3083–3132.  https://doi.org/10.1021/CR13A CrossRefGoogle Scholar
  16. Bandara GC, Heist CA, Remcho VT (2018) Chromatographic separation and visual detection on wicking micro fluidic devices: Quantitation of Cu2+ in surface, ground, and drinking water. Anal Chem 90:22594–22600.  https://doi.org/10.1021/acs.analchem.7b04087 CrossRefGoogle Scholar
  17. Best SP, Kolev SD, Gabriel JRP, Cattrall RW (2016) Polymerisation effects in the extraction of Co(II) into polymer inclusion membranes containing Cyanex 272. Structural studies of the Cyanex 272–Co(II) complex. J Membr Sci 497:377–386.  https://doi.org/10.1016/j.memsci.2015.09.046 CrossRefGoogle Scholar
  18. Bonggotgetsakul YYN, Cattrall RW, Kolev SD (2016) Recovery of gold from aqua regia digested electronic scrap using a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) based polymer inclusion membrane (PIM) containing Cyphos® IL 104. J Membr Sci 514:274–281.  https://doi.org/10.1016/J.MEMSCI.2016.05.002 CrossRefGoogle Scholar
  19. Booij K, Robinson CD, Burgess RM, Mayer P, Roberts CA, Ahrens L, Allan IJ, Brant J, Jones L, Kraus UR, Larsen MM, Lepom P, Petersen J, Profrock D, Roose P, Schafer S, Smedes F, Tixier C, Vorkamp K, Whitehouse P (2016) Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ Sci Technol 50:3–17.  https://doi.org/10.1021/acs.est.5b04050 CrossRefGoogle Scholar
  20. Carasek E, Merib J (2015) Membrane-based microextraction techniques in analytical chemistry: a review. Anal Chim Acta 880:8–25.  https://doi.org/10.1016/J.ACA.2015.02.049 CrossRefGoogle Scholar
  21. Cizmas L, Sharma VK, Gray CM, McDonald TJ (2015) Pharmaceuticals and personal care products in waters: occurrence, toxicity, and risk. Environ Chem Lett 13:381–394.  https://doi.org/10.1007/s10311-015-0524-4 CrossRefGoogle Scholar
  22. Davison W, Zhang H (2012) Progress in understanding the use of diffusive gradients in thin films (DGT) back to basics. Environ Chem 9:1–13.  https://doi.org/10.1071/EN11084 CrossRefGoogle Scholar
  23. De Paiva Magalhães D, Da Costa Marques MR, Baptista DF, Buss DF (2015) Metal bioavailability and toxicity in freshwaters. Environ Chem Lett 13:69–87.  https://doi.org/10.1007/s10311-015-0491-9 CrossRefGoogle Scholar
  24. Denna MCFJ, Camitan RAB, Yabut DAO, Rivera BA, Coo LD (2018) Determination of Cu(II) in environmental water samples using polymer inclusion membrane-TAC optode in a continuous flow system. Sensors Actuators B Chem 260:445–451.  https://doi.org/10.1016/j.snb.2017.12.165 CrossRefGoogle Scholar
  25. Dsikowitzky L, Schwarzbauer J (2014) Industrial organic contaminants: identification, toxicity and fate in the environment. Environ Chem Lett 12:371–386.  https://doi.org/10.1007/s10311-014-0467-1 CrossRefGoogle Scholar
  26. Elias G, Marguí E, Díez S, Fontàs C (2018) Polymer inclusion membrane as an effective sorbent to facilitate mercury storage and detection by X-ray fluorescence in natural waters. Anal Chem 90:4756–4763.  https://doi.org/10.1021/acs.analchem.7b05430 CrossRefGoogle Scholar
  27. Ensafi AA, Amini M (2010) A highly selective optical sensor for catalytic determination of ultra-trace amounts of nitrite in water and foods based on brilliant cresyl blue as a sensing reagent. Sensors Actuators B Chem 147:61–66.  https://doi.org/10.1016/J.SNB.2010.03.014 CrossRefGoogle Scholar
  28. Ertekin K, Oter O, Ture M, Rivera BA, Coo LD (2010) A long wavelength excitable fluorophore; chloro phenyl imino propenyl aniline (CPIPA) for selective sensing of Hg(II). J Fluoresc 20:533–540.  https://doi.org/10.1007/s10895-009-0577-5 CrossRefGoogle Scholar
  29. Esteve-Turrillas FA, Yusà V, Pastor A, de la Guardia M (2008) New perspectives in the use of semipermeable membrane devices as passive samplers. Talanta 74:443–457.  https://doi.org/10.1016/J.TALANTA.2007.06.019 CrossRefGoogle Scholar
  30. Evans AE, Mateo-Sagasta J, Qadir M, Boelee E, Ippolito A (2019) Agricultural water pollution: key knowledge gaps and research needs. Curr Opin Environ Sustain 36:20–27.  https://doi.org/10.1016/j.cosust.2018.10.003 CrossRefGoogle Scholar
  31. Fontàs C, Queralt I, Hidalgo M (2006) Novel and selective procedure for Cr(VI) determination by X-ray fluorescence analysis after membrane concentration. Spectrochim Acta Part B At Spectrosc 61:407–413.  https://doi.org/10.1016/J.SAB.2006.02.011 CrossRefGoogle Scholar
  32. Fontàs C, Vera R, Batalla A, Kolev SD, Anticó E (2014) A novel low-cost detection method for screening of arsenic in groundwater. Environ Sci Pollut Res 21:11682–11688.  https://doi.org/10.1007/s11356-014-2917-5 CrossRefGoogle Scholar
  33. Garcia-Rodríguez A, Matamoros V, Kolev SD, Fontàs C (2015) Development of a polymer inclusion membrane (PIM) for the preconcentration of antibiotics in environmental water samples. J Membr Sci 492:32–39.  https://doi.org/10.1016/J.MEMSCI.2015.05.037 CrossRefGoogle Scholar
  34. Garcia-Rodríguez A, Fontàs C, Matamoros V, Almeida MIGS, Cattrall RW, Kolev SD (2016) Development of a polymer inclusion membrane-based passive sampler for monitoring of sulfamethoxazole in natural waters. Minimizing the effect of the flow pattern of the aquatic system. Microchem J 124:175–180.  https://doi.org/10.1016/j.microc.2015.08.017 CrossRefGoogle Scholar
  35. Ghambarian M, Yamini Y, Esrafili A (2012) Developments in hollow fiber based liquid-phase microextraction: principles and applications. Microchim Acta 177:271–294.  https://doi.org/10.1007/s00604-012-0773-x CrossRefGoogle Scholar
  36. Górecki T, Namieśnik J (2002) Passive sampling. TrAC Trends. Anal Chem 21:276–291.  https://doi.org/10.1016/S0165-9936(02)00407-7 CrossRefGoogle Scholar
  37. Grudpan K, Jakmunee J (2008) Miscellaneous detection systems. Compr. Anal Chem 54:461–509.  https://doi.org/10.1016/S0166-526X(08)00617-X CrossRefGoogle Scholar
  38. Harman C, Allan IJ, Vermeirssen ELM (2012) Calibration and use of the polar organic chemical integrative sampler-a critical review. Environ Toxicol Chem 31:2724–2738.  https://doi.org/10.1002/etc.2011 CrossRefGoogle Scholar
  39. Hosseini M, Ganjali MR, Veismohammadi B, Faridbod F, Abkenar SD, Norouzi P (2010) Determination of terbium in phosphate rock by Tb3+-selective fluorimetric optode based on dansyl derivative as a neutral fluorogenic ionophore. Anal Chim Acta 664:172–177.  https://doi.org/10.1016/J.ACA.2010.02.016 CrossRefGoogle Scholar
  40. Jayawardane BM, McKelvie ID, Kolev SD (2012) A paper-based device for measurement of reactive phosphate in water. Talanta 100:454–460.  https://doi.org/10.1016/J.TALANTA.2012.08.021 CrossRefGoogle Scholar
  41. Jayawardane BM, Coo LD, Cattrall RW, Kolev SD (2013) The use of a polymer inclusion membrane in a paper-based sensor for the selective determination of Cu(II). Anal Chim Acta 803:106–112.  https://doi.org/10.1016/J.ACA.2013.07.029 CrossRefGoogle Scholar
  42. Jéquier E, Constant F (2010) Water as an essential nutrient: the physiological basis of hydration. Eur J Clin Nutr 64:115–123CrossRefGoogle Scholar
  43. Kahlon SK, Sharma G, Julka JM, Kumar A, Sharma S, Stadler FJ (2018) Impact of heavy metals and nanoparticles on aquatic biota. Environ Chem Lett 16:919–946.  https://doi.org/10.1007/s10311-018-0737-4 CrossRefGoogle Scholar
  44. Kalyan Y, Pandey AK, Bhagat PR, Acharya R, Natarajan V, Naidu GRK, Reddy AVR (2009a) Membrane optode for mercury(II) determination in aqueous samples. J Hazard Mater 166:377–382.  https://doi.org/10.1016/J.JHAZMAT.2008.11.027 CrossRefGoogle Scholar
  45. Kalyan Y, Pandey AK, Naidu GRK, Reddy AVR (2009b) Membrane optode for uranium(VI) ions preconcentration and quantification based on a synergistic combination of 4-(2-thiazolylazo)-resorcinol with 8-hydroxyquinaldine. Spectrochim Acta Part A Mol Biomol Spectrosc 74:1235–1241.  https://doi.org/10.1016/J.SAA.2009.09.045 CrossRefGoogle Scholar
  46. Khaldoun AI, Mitiche L, Sahmoune A, Fontàs C (2018) An efficient polymer inclusion membrane-based device for Cd monitoring in seawater. Membranes (Basel).  https://doi.org/10.3390/membranes8030061 CrossRefGoogle Scholar
  47. Kingston JK, Greenwood R, Mills GA, Morrison GM, Björklund Persson L (2000) Development of a novel passive sampling system for the time-averaged measurement of a range of organic pollutants in aquatic environments. J Environ Monit 2:487–495.  https://doi.org/10.1039/b003532g CrossRefGoogle Scholar
  48. Kolev SD, Baba Y, Cattrall RW, Tasaki T, Pereira N, Perera JM, Stevens GW (2009) Solid phase extraction of zinc(II) using a PVC-based polymer inclusion membrane with di(2-ethylhexyl)phosphoric acid (D2EHPA) as the carrier. Talanta 78:795–799.  https://doi.org/10.1016/j.talanta.2008.12.047 CrossRefGoogle Scholar
  49. Kolev SD, Almeida MIGS, Cattrall RW (2015) Polymer inclusion membranes. In: A.K. Pabby, Rizvi SSH, Sastre AM (eds) Handbook of membrane separations: chemical, pharmaceutical, food and biotechnological applications. CRC Press, Boca Raton, pp 721–737CrossRefGoogle Scholar
  50. Koop SHA, Van Leeuwen C (2017) The challenges of water, waste and climate change in cities. Environ Dev Sustain 19:285–418CrossRefGoogle Scholar
  51. Kusumocahyo SP, Kanamori T, Iwatsubo T, Sumaru K, Shinbo T, Matsuyama H, Teramoto M (2006) Modification of preparation method for polymer inclusion membrane (PIM) to produce hollow fiber PIM. J Appl Polym Sci 102:4372–4377.  https://doi.org/10.1002/app.24991 CrossRefGoogle Scholar
  52. Lee J, Lee HK, Rasmussen KE, Pedersen-Bjergaard S (2008) Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Anal Chim Acta 624:253–268.  https://doi.org/10.1016/J.ACA.2008.06.050 CrossRefGoogle Scholar
  53. López-López JA, Mendiguchía C, Pinto JJ, Moreno C (2010) Liquid membranes for quantification and speciation of trace metals in natural waters. TrAC Trends Anal Chem 29:645–653.  https://doi.org/10.1016/J.TRAC.2010.01.007 CrossRefGoogle Scholar
  54. Mahanty BN, Mohapatra PK, Raut DR, Das DK, Behere PG, Afzal Md (2016) Comparative evaluation of polymer inclusion membranes containing several substituted diglycolamides for actinide ion separations. J Membr Sci 501:134–143.  https://doi.org/10.1016/J.MEMSCI.2015.10.054 CrossRefGoogle Scholar
  55. Mamat NA, See HH (2015) Development and evaluation of electromembrane extraction across a hollow polymer inclusion membrane. J Chromatogr A 1406:34–39.  https://doi.org/10.1016/J.CHROMA.2015.06.020 CrossRefGoogle Scholar
  56. Mamat NA, See HH (2017) Simultaneous electromembrane extraction of cationic and anionic herbicides across hollow polymer inclusion membranes with a bubbleless electrode. J Chromatogr A 1504:9–16.  https://doi.org/10.1016/J.CHROMA.2017.05.005 CrossRefGoogle Scholar
  57. Mayer P, Tolls J, Hermens JLM, Mackay D (2003) Equilibrium sampling devices. Environ Sci Technol 37:184A–191A.  https://doi.org/10.1021/es032433i CrossRefGoogle Scholar
  58. Menegário AA, Yabuki LNM, Luko KS, Williams PN, Blackburn DM (2017) Use of diffusive gradient in thin films for in situ measurements: a review on the progress in chemical fractionation, speciation and bioavailability of metals in waters. Anal Chim Acta 983:54–66.  https://doi.org/10.1016/j.aca.2017.06.041 CrossRefGoogle Scholar
  59. Meng X, Gao C, Wang L, Wang X, Tang W, Chen H (2015) Transport of phenol through polymer inclusion membrane with N,N-di(1-methylheptyl) acetamide as carriers from aqueous solution. J Membr Sci 493:615–621.  https://doi.org/10.1016/j.memsci.2015.06.037 CrossRefGoogle Scholar
  60. Mercader-Trejo FE, Flora E, de San Miguel E, de Gyves J (2009a) Mercury(II) removal using polymer inclusion membranes containing Cyanex 471X. J Chem Technol Biotechnol 84:1323–1330.  https://doi.org/10.1002/jctb.2183 CrossRefGoogle Scholar
  61. Mercader-Trejo FE, de San Rodríguez, Miguel E, de Gyves J (2009b) Mercury(II) removal using polymer inclusion membranes containing Cyanex 471X. J Chem Technol Biotechnol 84:1323–1330.  https://doi.org/10.1002/jctb.2183 CrossRefGoogle Scholar
  62. Mikhelson KN, Peshkova MA (2015) Advances and trends in ionophore-based chemical sensors. Russ Chem Rev 84:555–578.  https://doi.org/10.1070/RCR60 CrossRefGoogle Scholar
  63. Nagul EA, Fontàs C, McKelvie ID, Cattrall RW, Kolev SD (2013) The use of a polymer inclusion membrane for separation and preconcentration of orthophosphate in flow analysis. Anal Chim Acta 803:82–90.  https://doi.org/10.1016/J.ACA.2013.07.052 CrossRefGoogle Scholar
  64. Nagul EA, Croft CF, Cattrall RW, Kolev SD (2019) Nanostructural characterisation of polymer inclusion membranes using X-ray scattering. J Membr Sci 558:117208.  https://doi.org/10.1016/j.memsci.2019.117208 CrossRefGoogle Scholar
  65. Ngarisan NI, Ngah CWZCW, Ahmad M, Kuswandi B (2014) Optimization of polymer inclusion membranes (PIMs) preparation for immobilization of Chrome Azurol S for optical sensing of aluminum(III). Sensors Actuators B Chem 203:465–470.  https://doi.org/10.1016/j.snb.2014.07.023 CrossRefGoogle Scholar
  66. Nghiem LD, Mornane P, Potter ID, Perera JM, Cattrall RW, Kolev SD (2006) Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J Membr Sci 281:7–41.  https://doi.org/10.1016/J.MEMSCI.2006.03.035 CrossRefGoogle Scholar
  67. Nitti F, Almeida MIGS, Morrison R, Cattrall RW, Pettigrove VJ, Coleman RA, Kolev SD (2018) Development of a portable 3D-printed flow-through passive sampling device free of flow pattern effects. Microchem J 143:359–366.  https://doi.org/10.1016/j.microc.2018.08.029 CrossRefGoogle Scholar
  68. O’Bryan Y, Truong YB, Cattrall RW, Kyratzis IL, Kolev SD (2017) A new generation of highly stable and permeable polymer inclusion membranes (PIMs) with their carrier immobilized in a crosslinked semi-interpenetrating polymer network. Application to the transport of thiocyanate. J Memb Sci 529:55–62.  https://doi.org/10.1016/j.memsci.2017.01.057 CrossRefGoogle Scholar
  69. Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M (2016) New developments in microextraction techniques in bioanalysis: a review. Anal Chim Acta 905:8–23.  https://doi.org/10.1016/J.ACA.2015.10.041 CrossRefGoogle Scholar
  70. Oedit A, Ramautar R, Hankemeier T, Lindenburg PW (2016) Electroextraction and electromembrane extraction: advances in hyphenation to analytical techniques. Electrophoresis 37:1170–1186.  https://doi.org/10.1002/elps.201500530 CrossRefGoogle Scholar
  71. Ohshima T, Kagaya S, Gemmei-Ide M, Cattrall RW, Kolev SD (2014) The use of a polymer inclusion membrane as a sorbent for online preconcentration in the flow injection determination of thiocyanate impurity in ammonium sulfate fertilizer. Talanta 129:560–564.  https://doi.org/10.1016/J.TALANTA.2014.06.029 CrossRefGoogle Scholar
  72. Pantůčková P, Kubáň P, Boček P (2015) In-line coupling of microextractions across polymer inclusion membranes to capillary zone electrophoresis for rapid determination of formate in blood samples. Anal Chim Acta 887:111–117.  https://doi.org/10.1016/J.ACA.2015.07.004 CrossRefGoogle Scholar
  73. Pechenkina IA, Mikhelson KN (2015) Materials for the ionophore-based membranes for ion-selective electrodes: problems and achievements (review paper). Russ J Electrochem 51:93–102.  https://doi.org/10.1134/S1023193515020111 CrossRefGoogle Scholar
  74. Pérez-Silva I, Rodríguez JA, Ramírez-Silva MT, Páez-Hernández ME (2012) Determination of oxytetracycline in milk samples by polymer inclusion membrane separation coupled to high performance liquid chromatography. Anal Chim Acta 718:42–46.  https://doi.org/10.1016/J.ACA.2011.12.057 CrossRefGoogle Scholar
  75. Piri-Moghadam H, Ahmadi F (2016) A critical review of solid phase microextraction for analysis of water samples. TrAC Trends Anal Chem 85:133–143.  https://doi.org/10.1016/J.TRAC.2016.05.029 CrossRefGoogle Scholar
  76. Polyakova OV, Mazur DM, Artaev VB, Lebedev AT (2016) Rapid liquid–liquid extraction for the reliable GC/MS analysis of volatile priority pollutants. Environ Chem Lett 14:251–257.  https://doi.org/10.1007/s10311-015-0544-0 CrossRefGoogle Scholar
  77. Poole CF (2003) New trends in solid-phase extraction. TrAC Trends Anal Chem 22:362–373.  https://doi.org/10.1016/S0165-9936(03)00605-8 CrossRefGoogle Scholar
  78. Pospiech B (2014) Selective recovery of cobalt(II) towards lithium(I) from chloride media by transport across polymer inclusion membrane with triisooctylamine. Polish J Chem Technol 16:15–20.  https://doi.org/10.2478/pjct-2014-0003 CrossRefGoogle Scholar
  79. Przewoźna M, Gajewski P, Michalak N, Bogacki MB, Skrzypczak A (2014) Determination of the percolation threshold for the oxalic, tartaric, and lactic acids transport through polymer inclusion membranes with 1-alkylimidazoles as a carrier. Sep Sci Technol 49:1745–1755.  https://doi.org/10.1080/01496395.2014.906464 CrossRefGoogle Scholar
  80. Radu A, Radu T, Mcgraw C, Dillingham P, Anastasova-Ivanova S, Diamond D (2013) Ion selective electrodes in environmental analysis. J Serbian Chem Soc 78:1729–1761.  https://doi.org/10.2298/JSC130829098R CrossRefGoogle Scholar
  81. Radzyminska-Lenarcik E, Witt K (2018) Copper recovery from model chloride solution using polymer inclusion membranes with 1-decyl-2,4-dimethylimidazle. IOP Conf Ser Mater Sci Eng 427:012005.  https://doi.org/10.1088/1757-899X/427/1/012005 CrossRefGoogle Scholar
  82. Radzyminska-Lenarcik E, Ulewicz R, Ulewicz M (2018) Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole. Desal Water Treatment 102:211–219.  https://doi.org/10.5004/dwt.2018.21826 CrossRefGoogle Scholar
  83. Resina M, Macanás J, de Gyves J, Muñoz M (2006) Zn(II), Cd(II) and Cu(II) separation through organic–inorganic Hybrid Membranes containing di-(2-ethylhexyl) phosphoric acid or di-(2-ethylhexyl) dithiophosphoric acid as a carrier. J Membr Sci 268:57–64.  https://doi.org/10.1016/J.MEMSCI.2005.06.008 CrossRefGoogle Scholar
  84. Sainz-Gonzalo FJ, Popovici C, Casimiro M, Raya-Baron A, Lopez-Ortiz F, Fernandez I, Fernandez-Sanchez JF, Fernandez-Gutierrez A (2013) A novel tridentate bis(phosphinic acid)phosphine oxide based europium(iii)-selective Nafion membrane luminescent sensor. Analyst 138:6134–6143.  https://doi.org/10.1039/c3an00064h CrossRefGoogle Scholar
  85. Sanchez-Pedreño C, Ortuño JA, Albero MI, Garcia MS, de las Bayonas JCG (2000) A new procedure for the construction of flow-through optodes. Application to determination of copper (II). Fresenius J Anal Chem 366:811–815.  https://doi.org/10.1007/s002160051576 CrossRefGoogle Scholar
  86. Schmidt-Marzinkowski J, See HH, Hauser PC (2013) Electric field driven extraction of inorganic anions across a polymer inclusion membrane. Electroanalysis 25:1879–1886.  https://doi.org/10.1002/elan.201300176 CrossRefGoogle Scholar
  87. Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136.  https://doi.org/10.1146/annurev-environ-100809-125342 CrossRefGoogle Scholar
  88. See HH, Hauser PC (2011) Electric field-driven extraction of lipophilic anions across a carrier-mediated polymer inclusion membrane. Anal Chem 83:7507–7513.  https://doi.org/10.1021/ac201772g CrossRefGoogle Scholar
  89. See HH, Hauser PC (2014a) Automated electric-field-driven membrane extraction system coupled to liquid chromatography–mass spectrometry. Anal Chem 86:8665–8670.  https://doi.org/10.1021/ac5015589 CrossRefGoogle Scholar
  90. See HH, Hauser PC (2014b) Electro-driven extraction of low levels of lipophilic organic anions and cations across plasticized cellulose triacetate membranes: effect of the membrane composition. J Membr Sci 450:147–152.  https://doi.org/10.1016/J.MEMSCI.2013.08.043 CrossRefGoogle Scholar
  91. See HH, Stratz S, Hauser PC (2013) Electro-driven extraction across a polymer inclusion membrane in a flow-through cell. J Chromatogr A 1300:79–84.  https://doi.org/10.1016/J.CHROMA.2013.01.062 CrossRefGoogle Scholar
  92. Shamsipur M, Sadeghi M, Alizadeh K, Bencini A, Valtancoli B, Garau A, Lippolis V (2010) Novel fluorimetric bulk optode membrane based on 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane for selective detection of lead(II) ions. Talanta 80:2023–2033.  https://doi.org/10.1016/J.TALANTA.2009.11.011 CrossRefGoogle Scholar
  93. Suah FBM, Ahmad M (2017) Preparation and characterization of polymer inclusion membrane based optode for determination of Al3+ ion. Anal Chim Acta 951:133–139.  https://doi.org/10.1016/j.aca.2016.11.040 CrossRefGoogle Scholar
  94. Suah FBM, Ahmad M, Heng LY (2014a) Highly sensitive fluorescence optode based on polymer inclusion membranes for determination of Al(III) ions. J Fluoresc 24:1235–1243.  https://doi.org/10.1007/s10895-014-1406-z CrossRefGoogle Scholar
  95. Suah FBM, Ahmad M, Heng LY (2014b) Highly sensitive fluorescence optode for aluminium(III) based on non-plasticized polymer inclusion membrane. Sensors Actuators B Chem 201:490–495.  https://doi.org/10.1016/J.SNB.2014.04.081 CrossRefGoogle Scholar
  96. Suah FBM, Ahmad M, Heng LY (2015) A novel polymer inclusion membranes based optode for sensitive determination of Al3+ ions. Spectrochim Acta Part A Mol Biomol Spectrosc 144:81–87.  https://doi.org/10.1016/J.SAA.2015.02.068 CrossRefGoogle Scholar
  97. Tabani H, Zare FD, Alahmad W, Varanusupakul P (2019) Determination of Cr(III) and Cr(VI) in water by dual-gel electromembrane extraction and a microfluidic paper-based device. Environ Chem Lett.  https://doi.org/10.1007/s10311-019-00921-w CrossRefGoogle Scholar
  98. Turull M, Elias G, Fontàs C, Díez S (2017) Exploring new DGT samplers containing a polymer inclusion membrane for mercury monitoring. Environ Sci Pollut Res 24:10919–10928.  https://doi.org/10.1007/s11356-016-6813-z CrossRefGoogle Scholar
  99. Vera R, Anticó E, Fontàs C (2018) The use of a polymer inclusion membrane for arsenate determination in groundwater. Water (Switzerland) 10:1093.  https://doi.org/10.3390/w10081093 CrossRefGoogle Scholar
  100. Vera R, Insa S, Fontàs C, Anticó E (2018) A new extraction phase based on a polymer inclusion membrane for the detection of chlorpyrifos, diazinon and cyprodinil in natural water samples. Talanta 185:291–298.  https://doi.org/10.1016/j.talanta.2018.03.056 CrossRefGoogle Scholar
  101. Vera R, Zhang Y, Fontàs C, Almeida MIGS, Antico E, Cattrall RW, Kolev SD (2019) Automatic determination of arsenate in drinking water by fl ow analysis with dual membrane-based separation. Food Chem 283:232–238.  https://doi.org/10.1016/j.foodchem.2018.12.122 CrossRefGoogle Scholar
  102. Vrana B, Allan IJ, Greenwood R, Mills GA, Dominiak E, Svensson K, Knutsson J, Morrison G (2005) Passive sampling techniques for monitoring pollutants in water. TrAC Trends Anal Chem 24:845–868.  https://doi.org/10.1016/J.TRAC.2005.06.006 CrossRefGoogle Scholar
  103. Wang D, Cattrall RW, Li J, Alemida MIGS, Stevens G, Kolev SD (2017) A poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)-based polymer inclusion membrane (PIM) containing LIX84I for the extraction and transport of Cu(II) from its ammonium sulfate/ammonia solutions. J Membr Sci 542:272–279.  https://doi.org/10.1016/j.memsci.2017.08.027 CrossRefGoogle Scholar
  104. Wang ZY, Sun Y, Tang N, Miao CL, Wang YT, Tang LH, Wang SX, Yang XJ (2019) Simultaneous extraction and recovery of gold(I) from alkaline solutions using an environmentally benign polymer inclusion membrane with ionic liquid as the carrier. Sep Purif Technol 222:136–144.  https://doi.org/10.1016/j.seppur.2019.04.030 CrossRefGoogle Scholar
  105. Yaftian MR, Almeida MIGS, Cattrall RW, Kolev SD (2018a) Selective extraction of vanadium(V) from sulfate solutions into a polymer inclusion membrane composed of poly(vinylidenefluoride-co-hexafluoropropylene) and Cyphos® IL 101. J Membr Sci 545:57–65.  https://doi.org/10.1016/j.memsci.2017.09.058 CrossRefGoogle Scholar
  106. Yaftian MR, Almeida MIGS, Cattrall RW, Kolev SD (2018b) Talanta Flow injection spectrophotometric determination of V (V) involving on-line separation using a poly (vinylidene fl uoride- co -hexa fl uoropropylene) -based polymer inclusion membrane. Talanta 181:385–391.  https://doi.org/10.1016/j.talanta.2018.01.042 CrossRefGoogle Scholar
  107. Yilmaz A, Arslan G, Tor A, Akin I (2011) Selectively facilitated transport of Zn(II) through a novel polymer inclusion membrane containing Cyanex 272 as a carrier reagent. Desalination 277:301–307.  https://doi.org/10.1016/j.desal.2011.04.045 CrossRefGoogle Scholar
  108. Zhang J, Harris AR, Cattrall RW, Bond AM (2010) Voltammetric ion-selective electrodes for the selective determination of cations and anions. Anal Chem 82:1624–1633.  https://doi.org/10.1021/ac902296r CrossRefGoogle Scholar
  109. Zhang LL, Cattrall RW, Kolev SD (2011) The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc. Talanta 84:1278–1283.  https://doi.org/10.1016/J.TALANTA.2011.01.033 CrossRefGoogle Scholar
  110. Zhang LL, Cattrall RW, Ashokkumar M, Kolev SD (2012) On-line extractive separation in flow injection analysis based on polymer inclusion membranes: A study on membrane stability and approaches for improving membrane permeability. Talanta 97:382–387.  https://doi.org/10.1016/J.TALANTA.2012.04.049 CrossRefGoogle Scholar
  111. Zuliani C, Diamond D (2012) Opportunities and challenges of using ion-selective electrodes in environmental monitoring and wearable sensors. Electrochim Acta 84:29–34.  https://doi.org/10.1016/J.ELECTACTA.2012.04.147 CrossRefGoogle Scholar
  112. Zulkefeli NSW, Weng SK, Abdul Halim NS (2018) Removal of heavy metals by polymer inclusion membranes. Curr Pollut Rep 4:84–92.  https://doi.org/10.1007/s40726-018-0091-y CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chemo and Biosensors Group, Faculty of PharmacyUniversity of JemberJemberIndonesia
  2. 2.School of ChemistryThe University of MelbourneParkvilleAustralia
  3. 3.Department of Chemistry, Faculty of Science and EngineeringUniversity of Nusa CendanaKupangIndonesia

Personalised recommendations