Advertisement

Environmental Chemistry Letters

, Volume 18, Issue 1, pp 97–111 | Cite as

Fate and risk of metal sulfide nanoparticles in the environment

  • Khan Ashfeen Ubaid
  • Xiaoxia Zhang
  • Virender K. Sharma
  • Lingxiangyu LiEmail author
Review

Abstract

With the rapid development of nanotechnology, metal sulfide nanoparticles have been widely detected in the environment including water, soils and sediments. Metal sulfides are considered as stable species in the environment, while transformation and risk of nanoparticles have attracted increasing attention due to their specific physicochemical properties compared to bulk materials. Here we review aggregation, sedimentation, chemical and biological transformations, and potential risk of silver sulfide (Ag2S), zinc sulfide (ZnS), copper sulfide (CuS), cadmium sulfide (CdS) and lead sulfide nanoparticles, and quantum dots such as ZnS and CdS. The review shows that both stability and risk of metal sulfide nanoparticles are highly dependent on environmental factors such as pH, inorganic salts and natural organic matter.

Keywords

Metal sulfide Nanoparticles Aggregation Chemical transformation Environmental risk 

Notes

Acknowledgements

K. A. Ubaid and X. Zhang contributed equally to the present study. We thank the National Natural Science Foundation of China (21806141), Natural Science Foundation of Zhejiang Province (LY18B070011) and Fundamental Research Funds of Zhejiang Sci-Tech University (2019Q058) for financial support. The authors also thank the anonymous reviewers for their valuable comments and suggestions on this work.

Compliance with ethical standards

Conflict of interest

The declare that they have no conflict of interest.

References

  1. Adegboyega NF, Sharma VK, Cizmas L, Sayes CM (2016) UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. Environ Chem Lett 14:353–357.  https://doi.org/10.1007/s10311-016-0577-z CrossRefGoogle Scholar
  2. Bebie J, Schoonen MAA, Fuhrmann M, Strongin DR (1998) Surface charge development on transition metal sulfides: an electrokinetic study. Geochim. Cosmochim. Acta 62:633–642.  https://doi.org/10.1016/S0016-7037(98)00058-1 CrossRefGoogle Scholar
  3. Benn TM, Westerhoff P (2008) Nanoparticles silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139.  https://doi.org/10.1021/es801501j CrossRefGoogle Scholar
  4. Blum AP, Kammeyer JK, Rush AM, Callmann CE, Haha ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137:2140–2154.  https://doi.org/10.1021/ja510147n CrossRefGoogle Scholar
  5. Brunetti G, Donner E, Laera G, Sekine R, Scheckel KG, Khaksar M, Vasilev K, De Mastro G, Lombi E (2015) Fate of zinc and silver engineered nanoparticles in sewage networks. Water Res 77:72–84.  https://doi.org/10.1016/j.watres.2015.03.003 CrossRefGoogle Scholar
  6. Buffet P, Poirier L, Zalouk-Vergnoux A, Lopes C, Amiard JC, Gaudin P, Faverney CR, Guibbolini M, Gilliand D, Perrein-Ettajani H, Valsami-Jones E, Mouneyrac C (2014) Biochemical and behavioural responses of the marine polychaete Hediste diversicolor to cadmium sulfide quantum dots (CdS QDs): waterborne and dietary exposure. Chemosphere 100:63–70.  https://doi.org/10.1016/j.chemosphere.2013.12.069 CrossRefGoogle Scholar
  7. Collin B, Tsyusko OV, Starnes DL, Unrine JM (2016) Effect of natural organic matter on dissolution and toxicity of sulfidized silver nanoparticles to Caenorhabditis elegans. Environ Sci Nano 3:728–736.  https://doi.org/10.1039/C6EN00095A CrossRefGoogle Scholar
  8. Cowman CD, Padgett E, Tan KW, Hovden R, Gu Y, Andrejevic N, Muller D, Coates GW, Wiesner U (2015) Multicomponent nanomaterials with complex networked architectures from orthogonal degradation and binary metal backfilling in ABC triblock terpolymers. J Am Chem Soc 137:6026–6033.  https://doi.org/10.1021/jacs.5b01915 CrossRefGoogle Scholar
  9. Cui C, Li X, Liu J, Hou Y, Zhao Y, Zhong G (2015) Synthesis and functions of Ag2S nanostructures. Nanoscale Res Lett 10:431–451.  https://doi.org/10.1186/s11671-015-1125-7 CrossRefGoogle Scholar
  10. Dale AL, Lowry GV, Casman EA (2013) Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol 47:12920–12928.  https://doi.org/10.1021/es402341t CrossRefGoogle Scholar
  11. Dang F, Chen Y, Huang Y, Hintelmann H, Si Y, Zhou D (2019) Discerning the sources of silver nanoparticle in a terrestrial food chain by stable isotope tracer technique. Environ Sci Technol 53:3802–3810.  https://doi.org/10.1021/acs.est.8b06135 CrossRefGoogle Scholar
  12. De Jonge M, Teuchies J, Meire P, Blust R, Bervoets L (2012) The impact of increased oxygen conditions on metal-contaminated sediments part I: effects on redox status, sediment geochemistry and metal bioavailability. Water Res 46:2205–2214.  https://doi.org/10.1016/j.watres.2012.01.052 CrossRefGoogle Scholar
  13. del Real AEP, Castillo-Michel H, Kaegi R, Sinnet B, Magnin V, Findling N, Villanova J, Carrière M, Santaella C, dez-Martıńez AF, Levard C, Sarret G (2016) Fate of Ag-NPs in sewage sludge after application on agricultural soils. Environ Sci Technol 50:1759–1768.  https://doi.org/10.1021/acs.est.5b04550 CrossRefGoogle Scholar
  14. del Real AEP, Vidal V, Carriere M, Castillo-Michel H, Levard C, Chaurand P, Sarret G (2017) Silver nanoparticles and wheat roots: a complex interplay. Environ Sci Technol 51:5774–5782.  https://doi.org/10.1021/acs.est.7b00422 CrossRefGoogle Scholar
  15. Deonarine A, Lau BLT, Aiken GR, Ryan JN, Hsu-Kim H (2011) Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Environ Sci Technol 45:3217–3223.  https://doi.org/10.1021/es1029798 CrossRefGoogle Scholar
  16. Devi GP, Ahmed KBA, Sai Varsha MKN, Shrijha BS, Subin Lal KK, Anbazhagan V, Thiagarajan R (2015) Sulfidation of silver nanoparticle reduces its toxicity in zebrafish. Aquat Toxicol 158:149–156.  https://doi.org/10.1016/j.aquatox.2014.11.007 CrossRefGoogle Scholar
  17. Donner E, Howard DL, de Jonge MD, Paterson D, Cheah MH, Naidu R, Lombi E (2011) X-ray absorption and micro x-ray fluorescence spectroscopy investigation of copper and zinc speciation in biosolids. Environ Sci Technol 45:7249–7257.  https://doi.org/10.1021/es201710z CrossRefGoogle Scholar
  18. Donner E, Scheckel K, Sekine R, Popelka-Filcoff RS, Bennett JW, Brunetti G, Naidu R, McGrath SP, Lombi E (2015) Nonlabile silver species in biosolids remain stable throughout 50 years of weathering and ageing. Environ Pollut 205:78–86.  https://doi.org/10.1016/j.envpol.2015.05.017 CrossRefGoogle Scholar
  19. Elimelech M, Jia X, Gregory J, Williams R (1998) Particle deposition and aggregation: measurement, modelling and simulation. Butterworth- Heinemann, OxfordGoogle Scholar
  20. Eskelsen JR, Xu J, Chiu M, Moon J, Wilkins B, Graham DE, Gu B, Pierce EM (2018) Influence of structural defects on biomineralized ZnS nanoparticle dissolution: an in-situ electron microscopy study. Environ Sci Technol 52:1139–1149.  https://doi.org/10.1021/acs.est.7b04343 CrossRefGoogle Scholar
  21. Evans P, Matsunaga H, Kiguchi M (2008) Large-scale application of nanotechnology for wood protection. Nat Nanotechnol 3:577.  https://doi.org/10.1038/nnano.2008.286 CrossRefGoogle Scholar
  22. Eymard-Vernain E, Lelong C, del Real AP, Soulas R, Bureau S, Suarez VT, Gallet B, Proux O, Castillo-Michel H, Sarret G (2018) Impact of a model soil microorganism and of its secretome on the fate of silver nanoparticles. Environ Sci Technol 52:71–78.  https://doi.org/10.1021/acs.est.7b04071 CrossRefGoogle Scholar
  23. Fletcher ND, Lieb HC, Mullaugh KM (2019) Stability of silver nanoparticle sulfidation products. Sci Total Environ 648:854–860.  https://doi.org/10.1016/j.scitotenv.2018.08.239 CrossRefGoogle Scholar
  24. Fulda B, Voegelin A, Kretzschmar R (2013) Redox-controlled changed in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environ Sci Technol 47:12775–12783.  https://doi.org/10.1021/es401997d CrossRefGoogle Scholar
  25. Gao LM, Li YF, Han R (2016) The detoxification effects of He-Ne laser irradiation on cytotoxicity of cadmium sulfide nanoparticles (CdSNPs) in tall fescue seedlings. Can J Plant Sci 96:539–550.  https://doi.org/10.1139/cjps-2015-0109 CrossRefGoogle Scholar
  26. Ghariani RA, Grzetic I, Antic M, Mandic SN (2010) Distribution and availability of potentially toxic metals in soil in central area of Belgrade, Serbia. Environ Chem Lett 8:261–269.  https://doi.org/10.1007/s10311-009-0215-0 CrossRefGoogle Scholar
  27. Gogos A, Thalmann B, Voegelin A, Kaegi R (2017) Sulfidation kinetics of copper oxide nanoparticles. Environ Sci Nano 4:1733–1741.  https://doi.org/10.1039/C7EN00309A CrossRefGoogle Scholar
  28. Gondikas AP, Jang EK, Hsu-Kim H (2010) Influence of amino acids cysteine and serine on aggregation kinetics of zinc and mercury sulfide colloids. J Colloid Interface Sci 347:167–171.  https://doi.org/10.1016/j.jcis.2010.03.051 CrossRefGoogle Scholar
  29. Gondikas AP, Masion A, Auffan M, Lau BLT, Hsu-Kim H (2012) Early-stage precipitation kinetics of zinc sulfide nanoclusters forming in the presence of cysteine. Chem Geol 329:10–17.  https://doi.org/10.1016/j.chemgeo.2011.06.009 CrossRefGoogle Scholar
  30. Guo Z, Zeng G, Cui K, Chen A (2019) Toxicity of environmental nanosilver: mechanism and assessment. Environ Chem Lett 17:319–333.  https://doi.org/10.1007/s10311-018-0800-1 CrossRefGoogle Scholar
  31. Han N, Wu X, Chai L, Liu H, Chen Y (2010) Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors. Sens Actuat B Chem 150:230–238.  https://doi.org/10.1016/j.snb.2010.07.009 CrossRefGoogle Scholar
  32. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172.  https://doi.org/10.1289/ehp.8284 CrossRefGoogle Scholar
  33. Hinsinger P (2001) Bioavailability of trace elements as related to root-induced chemical changes in the rhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere, Chapter 2. CRC Press, Boca Raton, pp 25–41Google Scholar
  34. Hofacker AF, Voegelin A, Kaegi R, Weber F, Kretzschmar R (2013) Temperature-dependent formation of metallic copper and metal sulfide nanoparticles during flooding of a contaminated soil. Geochim Cosmochim Acta 103:316–332.  https://doi.org/10.1016/j.gca.2012.10.053 CrossRefGoogle Scholar
  35. Horzempa LM, Helz GR (1979) Controls on the stability of sulphide sols - colloidal covellite as an example. Geochim Cosmochim Acta 43:1645–1650.  https://doi.org/10.1016/0016-7037(79)90183-2 CrossRefGoogle Scholar
  36. Hossain ST, Mukherjee SK (2013) Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells. J Hazard Mater 260:1073–1082.  https://doi.org/10.1016/j.jhazmat.2013.07.005 CrossRefGoogle Scholar
  37. Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924.  https://doi.org/10.2134/jeq2009.0462 CrossRefGoogle Scholar
  38. Impellitteri CA, Harmon S, Silva RG, Miller BW, Scheckel KG, Luxton TP, Schupp D, Panguluri S (2013) Transformation of silver nanoparticles in fresh, aged, and incinerated biosolids. Water Res 47:3878–3886.  https://doi.org/10.1016/j.watres.2012.12.041 CrossRefGoogle Scholar
  39. Jassby D, Wiesner M (2011) Characterization of ZnS nanoparticle aggregation using photoluminescence. Langmuir 27:902–908.  https://doi.org/10.1021/la103470r CrossRefGoogle Scholar
  40. Kaegi R, Voegelin A, Sinnet B, Zuleeg S, Hagendorfer H, Burkhardt M, Siegrist H (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908.  https://doi.org/10.1021/es1041892 CrossRefGoogle Scholar
  41. Kaegi R, Voegelin A, Ort C, Sinnet B, Thalmann B, Krismer J, Hagendorfer H, Elumelu M, Mueller E (2013) Fate and transformation of silver nanoparticles in urban wastewater systems. Water Res 47:3866–3877.  https://doi.org/10.1016/j.watres.2012.11.060 CrossRefGoogle Scholar
  42. Kampe S, Kaegi R, Schlich K, Wasmuth C, Hollert H, Schlechtriem C (2018) Silver nanoparticles in sewage sludge: bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber. Environ Toxicol Chem 37:1606–1613.  https://doi.org/10.1002/etc.4102 CrossRefGoogle Scholar
  43. Kang S, Choi W (2009) Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environ Sci Technol 43:878–883.  https://doi.org/10.1021/es801705f CrossRefGoogle Scholar
  44. Kaphle A, Navya PN, Umapathi A, Daima HK (2018) Nanomaterials for agriculture, food and environment: applications, toxicity and regulation. Environ Chem Lett 16:43–58.  https://doi.org/10.1007/s10311-017-0662-y CrossRefGoogle Scholar
  45. Kasana RC, Panwar NR, Kaul RK, Kumar P (2017) Biosynthesis and effects of copper nanoparticles on plants. Environ Chem Lett 15:233–240.  https://doi.org/10.1007/s10311-017-0615-5 CrossRefGoogle Scholar
  46. Kent RD, Oser JG, Vikesland PJ (2014) Controlled evaluation of silver nanoparticle sulfidation in a full-scale wastewater treatment plant. Environ Sci Technol 48:8564–8572.  https://doi.org/10.1021/es404989t CrossRefGoogle Scholar
  47. Khaksar M, Jolley DF, Sekine R, Vasilev K, Johannessen B, Donner E, Lombi E (2015) In situ chemical transformations of silver nanoparticles along the water-sediment continuum. Environ Sci Technol 49:318–325.  https://doi.org/10.1021/es504395m CrossRefGoogle Scholar
  48. Kim B, Park C, Murayama M Jr, Hochella MF (2010) Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. Environ Sci Technol 44:7509–7514.  https://doi.org/10.1021/es101565j CrossRefGoogle Scholar
  49. Kokina I, Jahundovica I, Mickevica I, Sledevskis E, Ogurcovs A, Polyakov B, Jermalonoka M, Strautins J, Gerbreders V (2015) The impact of CdS nanoparticles on ploidy and DNA damage of rucolar (Eruca sativa Mill.) plants. J Nanomater 16:1–7.  https://doi.org/10.1155/2015/470250 CrossRefGoogle Scholar
  50. Kraas M, Schlich K, Knopf B, Wege F, Kagi R, Terytze K, Hund-Rinke K (2017) Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora. Environ Toxicol Chem 36:3305–3313.  https://doi.org/10.1002/etc.3904 CrossRefGoogle Scholar
  51. Kuznetsova YV, Rempel SV, Popov ID, Gerasimov EY, Rempel AA (2017) Stabilization of Ag2S nanoparticles in aqueous solution by MPS. Colloids Surf A Physicochem Eng Asp 520:369–377.  https://doi.org/10.1016/j.colsurfa.2017.02.013 CrossRefGoogle Scholar
  52. Ladhar C, Geffroy B, Cambier S, Treguer-Delapierre M, Durand E, Brethes D, Bourdineaud J (2013) Impact of dietary cadmium sulphide nanoparticles on Danio rerio zebrafish at very low contamination pressure. Nanotoxicology 8:1–10.  https://doi.org/10.3109/17435390.2013.822116 CrossRefGoogle Scholar
  53. Levard C, Hotze EM, Lowry GV Jr, Brown GE (2012) Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ Sci Technol 46:6900–6914.  https://doi.org/10.1021/es2037405 CrossRefGoogle Scholar
  54. Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ Jr, Brown GE, Tanguay RL, Di Giulio RT, Bernhardt ES, Meyer JN, Wiesner MR, Lowry GV (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47:13440–13448.  https://doi.org/10.1021/es403527n CrossRefGoogle Scholar
  55. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983.  https://doi.org/10.1021/es102624t CrossRefGoogle Scholar
  56. Li L, Hu L, Zhou Q, Huang C, Wang Y, Sun C, Jiang G (2015) Sulfidation as a natural antidote to metallic nanoparticles is overestimated: CuO sulfidation yields CuS nanoparticles with increased toxicity in medaka (Oryzias latipes) embryos. Environ Sci Technol 49:2486–2495.  https://doi.org/10.1021/es505878f CrossRefGoogle Scholar
  57. Li L, Wang Y, Liu Q, Jiang G (2016a) Rethinking stability of silver sulfide nanoparticles (Ag2S-NPs) in the aquatic environment: photoinduced transformation of Ag2S-NPs in the presence of Fe(II). Environ Sci Technol 50:188–196.  https://doi.org/10.1021/acs.est.5b03982 CrossRefGoogle Scholar
  58. Li L, Zhou Q, Geng F, Wang Y, Jiang G (2016b) Formation of nanosilver from silver sulfide nanoparticles in natural waters by photoinduced Fe(II, III) redox cycling. Environ Sci Technol 50:13342–13350.  https://doi.org/10.1021/acs.est.6b04042 CrossRefGoogle Scholar
  59. Li L, Xu Z, Wimmer A, Tian Q, Wang X (2017a) New insights into the stability of silver sulfide nanoparticles in surface water: dissolution through hypochlorite oxidation. Environ Sci Technol 51:7920–7927.  https://doi.org/10.1021/acs.est.7b01738 CrossRefGoogle Scholar
  60. Li M, Wang P, Dang F, Zhou D (2017b) The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. Environ Sci Nano 4:919–928.  https://doi.org/10.1039/C6EN00682E CrossRefGoogle Scholar
  61. Li L, Zhu B, Yan X, Zhou Q, Wang Y, Jiang G (2018) Effect of silver sulfide nanoparticles on photochemical degradation of dissolved organic matter in surface water. Chemosphere 193:1113–1119.  https://doi.org/10.1016/j.chemosphere.2017.11.141 CrossRefGoogle Scholar
  62. Li L, Cui Y, Lu L, Liu Y, Zhu C, Tian L, Li W, Zhang X, Cheng H, Ma J, Chu J, Tong Z, Yu H (2019) Selenium stimulates cadmium detoxification in Caenorhabditis elegans through thiols-mediated nanoparticles formation and secretion. Environ Sci Technol 53:2344–2352.  https://doi.org/10.1021/es505878f CrossRefGoogle Scholar
  63. Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175.  https://doi.org/10.1021/es9035557 CrossRefGoogle Scholar
  64. Liu J, Aruguete DM, Murayama M Jr, Hochella MF (2009) Influence of size and aggregation on the reactivity of an environmentally and industrially relevant nanomaterial (PbS). Environ Sci Technol 3:8178–8183.  https://doi.org/10.1021/es902121r CrossRefGoogle Scholar
  65. Liu S, Wang C, Hou J, Wang P, Miao L, Li T (2018a) Effects of silver sulfide nanoparticles on the microbial community structure and biological activity of freshwater biofilms. Environ Sci Nano 5:2899–2908.  https://doi.org/10.1039/C8EN00480C CrossRefGoogle Scholar
  66. Liu Y, Yang T, Wang L, Huang Z, Li J, Cheng H, Jiang J, Pang S, Qi J, Ma J (2018b) Interpreting the effects of natural organic matter on antimicrobial activity of Ag2S nanoparticles with soft particle theory. Water Res 145:12–20.  https://doi.org/10.1016/j.watres.2018.07.063 CrossRefGoogle Scholar
  67. Lombi E, Donner E, Tavakkoli E, Turney TW, Naidu R, Miller BW, Scheckel KG (2012a) Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ Sci Technol 46:9089–9096.  https://doi.org/10.1021/es301487s CrossRefGoogle Scholar
  68. Lombi E, Nowack B, Baun A, McGrath SP (2012b) Evidence for effects of manufactured nanomaterials on crops is inconclusive. Proc Natl Acad Sci USA 109:3336–3336.  https://doi.org/10.1073/pnas.1214934109 CrossRefGoogle Scholar
  69. Lombi E, Donner E, Taheri S, Tavakkoli E, Jamting A, McClure S, Naidu R, Miller BW, Scheckel KG, Vasilev K (2013) Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ Pollut 176:193–197.  https://doi.org/10.1016/j.envpol.2013.01.029 CrossRefGoogle Scholar
  70. Lowry GV, Espinasse BP, Badireddy AR, Richardson CJ, Reinsch BC, Bryant LD, Bone AJ, Deonarine A, Chae S, Therezien M, Colman BP, Hsu-Kim HE, Bernhardt S, Matson CW, Wiesner MR (2012a) Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ Sci Technol 46:7027–7036.  https://doi.org/10.1021/es204608d CrossRefGoogle Scholar
  71. Lowry GV, Gregory KB, Apte SC, Lead JR (2012b) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899.  https://doi.org/10.1021/es300839e CrossRefGoogle Scholar
  72. Lv J, Zhang S, Wang S, Luo L, Huang H, Zhang J (2014) Chemical transformation of zinc oxide nanoparticles as a result of interaction with hydroxyapatite. Colloids Surface A 461:126–132.  https://doi.org/10.1016/j.colsurfa.2014.07.036 CrossRefGoogle Scholar
  73. Ma R, Levard C, Michel FM Jr, Brown GE, Lowry GV (2013) Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ Sci Technol 47:2527–2534.  https://doi.org/10.1021/es3035347 CrossRefGoogle Scholar
  74. Ma R, Stegemeier J, Levard C, Dale JG, Noack CW, Yang T, Brown GE, Lowry GV (2014) Sulfidation of copper oxide nanoparticles and properties of resulting copper sulfide. Environ Sci Nano 1:347–357.  https://doi.org/10.1039/C4EN00018H CrossRefGoogle Scholar
  75. Madhura L, Singh S, Kanch S, Sabela M, Bisetty K, Inamuddin (2019) Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett 17:65–121.  https://doi.org/10.1007/s10311-018-0778-8 CrossRefGoogle Scholar
  76. Maiolo D, Paolini L, Noto GD, Zendrini A, Berti D, Bergese P, Ricotta D (2015) Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem 87:4168–4176.  https://doi.org/10.1021/ac504861d CrossRefGoogle Scholar
  77. Mala JGS, Rose C (2014) Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC2918. J Biotechnol 170:73–78.  https://doi.org/10.1016/j.jbiotec.2013.11.017 CrossRefGoogle Scholar
  78. Manickam V, Velusamy RK, Lochana R, Amiti, Rajendran B, Tamizhselvi R (2017) Applications and genotoxicity of nanomaterials in the food industry. Environ Chem Lett 15:399–412.  https://doi.org/10.1007/s10311-017-0633-3 CrossRefGoogle Scholar
  79. Martinez CE, Bazilevskaya KA, Lanziroti A (2006) Zinc coordination to multiple ligand atoms in organic-rich surface soils. Environ Sci Technol 40:5688–5695.  https://doi.org/10.1021/es0608343 CrossRefGoogle Scholar
  80. Mehta SK, Kumar S, Chaudhary S, Bhasin KK (2009) Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles. Nanoscale Res Lett 4:1197–1208.  https://doi.org/10.1007/s11671-009-9377-8 CrossRefGoogle Scholar
  81. Meier C, Voegelin A, del Real AP, Sarret G, Mueller CR, Kaegi R (2016) Transformation of silver nanoparticles in sewage sludge during incineration. Environ Sci Technol 50:3503–3510.  https://doi.org/10.1021/acs.est.5b04804 CrossRefGoogle Scholar
  82. Narayanan SS, Pal SK (2006) Aggregated CdS quantum dots: host of biomolecular ligands. J Phys Chem B 110:24403–24409.  https://doi.org/10.1021/jp064180w CrossRefGoogle Scholar
  83. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964.  https://doi.org/10.1021/es801785m CrossRefGoogle Scholar
  84. NRC (2012) A research strategy for environmental, health, and safety aspects of engineered nanomaterials. The National Academies Press: Washington, DC. https://www.nap.edu/read/13347
  85. Pourahmad A (2012) Ag2S nanoparticle encapsulated in mesoporous material nanoparticles and its application for photocatalytic degradation of dye in aqueous solution. Superlattices Microstruct 52:276–287.  https://doi.org/10.1016/j.spmi.2012.05.009 CrossRefGoogle Scholar
  86. Poynton HC, Chen C, Alexander SL, Major KM, Blalock BJ, Unrine JM (2019) Enhanced toxicity of environmentally transformation ZnO nanoparticles relative to Zn ions in the epibenthic amphipod Hyalella azteca. Environ Sci Nano 6:325–340.  https://doi.org/10.1039/C8EN00755A CrossRefGoogle Scholar
  87. Prapainop K, Witter DP Jr, Wentworth P (2012) A chemical approach for cell-specific targeting of nanomaterials: small-molecule-initiated misfolding of nanoparticle corona proteins. J Am Chem Soc 134:4100–4103.  https://doi.org/10.1021/ja300537u CrossRefGoogle Scholar
  88. Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao LJ, Gardea-Torresdey JL, Holden PA (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci USA 109:2451–2456.  https://doi.org/10.1073/pnas.1205431109 CrossRefGoogle Scholar
  89. Pulit-Prociak J, Stokłosa K, Banach M (2015) Nanosilver products and toxicity. Environ Chem Lett 13:59–68.  https://doi.org/10.1007/s10311-014-0490-2 CrossRefGoogle Scholar
  90. Qi L, Colfen H, Antonietti M (2001) Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers. Nano Lett 1:61–65.  https://doi.org/10.1021/nl0055052 CrossRefGoogle Scholar
  91. Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB Jr, Brown GE, Lowry GV (2012) Sulfidation of silver nanoparticles decrease Escherichia coli growth inhibition. Environ Sci Technol 46:6992–7000.  https://doi.org/10.1021/es203732x CrossRefGoogle Scholar
  92. Santos AR, Miguel AS, Tomaz L, Malho R, Maycock C, Vaz Patto MC, Fevereiro P, Oliva A (2010) The impact of CdSe/ZnS quantum dots in cells of Medicago sativa in suspension culture. J Nanobiotechnol 8:24–37.  https://doi.org/10.1186/1477-3155-8-24 CrossRefGoogle Scholar
  93. Sardoiwala MN, Kaundal B, Choudhury SR (2018) Toxic impact of nanomaterials on microbes, plants and animals. Environ Chem Lett 16:147–160.  https://doi.org/10.1007/s10311-017-0672-9 CrossRefGoogle Scholar
  94. Scheele M, Hanifi D, Zherebetskyy D, Chourou ST, Axnanda S, Rancatore BJ, Thorkelsson K, Xu T, Liu Z, Wang L, Liu Y, Alivisatos AP (2014) PbS nanoparticles capped with tetrathiafulvalenetetracarboxylate: utilizing energy level alignment for efficient carrier transport. ACS Nano 8:2532–2540.  https://doi.org/10.1021/nn406127s CrossRefGoogle Scholar
  95. Sekine R, Khaksar M, Brunetti G, Donner E, Scheckel KG, Lombi E, Vasilev K (2013) Surface immobilization of engineered nanomaterials for in situ study of their environmental transformations and fate. Environ Sci Technol 47:9308–9316.  https://doi.org/10.1021/es400839h CrossRefGoogle Scholar
  96. Sekine R, Brunetti G, Donner E, Khaksar M, Vasilev K, Jämting A, Scheckel KG, Kappen P, Zhang H, Lombi E (2015) Speciation and lability of Ag-, AgCl- and Ag2S-nanoparticles in soil determined by x-ray absorption spectroscopy and diffusive gradients in thin films. Environ Sci Technol 49:897–905.  https://doi.org/10.1021/es504229h CrossRefGoogle Scholar
  97. Shi E, Xu Z, Zhang X, Yang X, Liu Q, Zhang H, Wimmer A, Li L (2018) Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: oxidative dissolution by manganese oxide. Environ Pollut 243:1242–1251.  https://doi.org/10.1016/j.envpol.2018.09.103 CrossRefGoogle Scholar
  98. Simeonidis K, Martinez-Boubeta C, Zamora-Pérez P, Rivera-Gil P, Kaprara E, Kokkinos E, Mitrakas M (2019) Implementing nanoparticles for competitive drinking water purification. Environ Chem Lett 17:705–719.  https://doi.org/10.1007/s10311-018-00821-5 CrossRefGoogle Scholar
  99. Stegemeier JP, Schwab F, Colman BP, Webb SM, Newville M, Lanzirotti A, Winkler C, Wiesner MR, Lowry GV (2015) Speciation matters: bioavailability of silver and silver sulfide nanoparticles to alfalfa (medicago sativa). Environ Sci Technol 49:8451–8460.  https://doi.org/10.1021/acs.est.5b01147 CrossRefGoogle Scholar
  100. Stegemeier JP, Colman BP, Schwab F, Wiesner MR, Lowry GV (2017) Uptake and distribution of silver in the aquatic plant Landoltia punctata (duckweed) exposed to silver and silver sulfide nanoparticles. Environ Sci Technol 51:4936–4943.  https://doi.org/10.1021/acs.est.6b06491 CrossRefGoogle Scholar
  101. Thalmann B, Voegelin A, von Gunten U, Behra R, Morgenroth E, Kaegi R (2015) Effect of ozone treatment on nano-sized silver sulfide in wastewater effluent. Environ Sci Technol 49:10911–10919.  https://doi.org/10.1021/acs.est.5b02194 CrossRefGoogle Scholar
  102. Tou F, Yang Y, Feng J, Niu Z, Pan H, Qin Y, Guo X, Meng X, Liu M, Hochella MF (2017) Environmental risk implications of metals in sludges from waste water treatment plants: the discovery of vast stores of metal-containing nanoparticles. Environ Sci Technol 51:4831–4840.  https://doi.org/10.1021/acs.est.6b05931 CrossRefGoogle Scholar
  103. Wan B, Yan Y, Tang Y, Bai Y, Liu F, Tan W, Huang Q, Feng X (2017) Effects of polyphosphates and orthophosphate on the dissolution and transformation of ZnO nanoparticles. Chemosphere 176:255–265.  https://doi.org/10.1016/j.chemosphere.2017.02.134 CrossRefGoogle Scholar
  104. Wang Z, von dem Bussche A, Kabadi PK, Kane AB, Hurt RH (2013) Biological and environmental transformations of copper- based nanomaterials. ACS Nano 7:8715–8727.  https://doi.org/10.1021/nn403080y CrossRefGoogle Scholar
  105. Wang P, Menzies NW, Lombi E, Sekine R, Blamey FP, Hernandez-Soriano MC, Cheng M, Kappen P, Peijnenburg WJ, Tang C, Kopittke PM (2015) Silver sulfide nanoparticles (Ag2S-NPs) are taken up by plants and are phytotoxic. Nanotoxicology 9:1041–1049.  https://doi.org/10.3109/17435390.2014.999139 CrossRefGoogle Scholar
  106. Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM (2016) Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ Sci Technol 50:8274–8281.  https://doi.org/10.1021/acs.est.6b01180 CrossRefGoogle Scholar
  107. Wang P, Lombi E, Sun S, Scheckel KG, Malysheva A, McKenna BA, Menzies NW, Zhao F, Kopittke PM (2017) Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environ Sci Nano 4:448–460.  https://doi.org/10.1039/C6EN00489J CrossRefGoogle Scholar
  108. Wang J, Wang P, Gu Y, Kopittke PM, Zhao F, Wang P (2019) Iron–manganese (Oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environ Sci Technol 53:2500–2508.  https://doi.org/10.1021/acs.est.8b06863 CrossRefGoogle Scholar
  109. Weber F, Voegelin A, Kaegi R, Kretzschmar R (2009) Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nat Geosci 2:267–271.  https://doi.org/10.1038/ngeo476 CrossRefGoogle Scholar
  110. Wermink WN, Versteeg GF (2018) Dissolution of CuS particles with Fe(III) in acidic sulfate solutions. Ind Eng Chem Res 57:12323–12334.  https://doi.org/10.1021/acs.iecr.8b01598 CrossRefGoogle Scholar
  111. Westerhoff P, Lee S, Yang Y, Gordon GW, Hristovski K, Halden RU, Herckes P (2015) Characterization, recovery opportunities, and valuation of metals in municipal sludges from U.S. wastewater treatment plants nationwide. Environ Sci Technol 49:9479–9488.  https://doi.org/10.1021/es505329q CrossRefGoogle Scholar
  112. Wu Y, Wadia C, Ma W, Sadtler B, Alivisatos AP (2008) Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett 8:2551–2555.  https://doi.org/10.1021/nl801817d CrossRefGoogle Scholar
  113. Xie M, Alsina MA, Yuen J, Packman AI, Gaillard J (2019) Effects of resuspension on the mobility and chemical speciation of zinc in contaminated sediments. J. Hazard. Mater. 364:300–308.  https://doi.org/10.1016/j.jhazmat.2018.10.043 CrossRefGoogle Scholar
  114. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275.  https://doi.org/10.1021/nl301934w CrossRefGoogle Scholar
  115. Yin Y, Xu W, Tan Z, Li Y, Wang W, Guo X, Yu S, Liu J, Jiang G (2017) Photo- and thermo-chemical transformation of AgCl and Ag2S in environmental matrices and its implication. Environ Pollut 220:955–962.  https://doi.org/10.1016/j.envpol.2016.10.081 CrossRefGoogle Scholar
  116. Yu S, Yin Y, Liu J (2013) Silver nanoparticles in the environment. Environ Sci Proc Impacts 15:78–92.  https://doi.org/10.1039/C2EM30595J CrossRefGoogle Scholar
  117. Yu S, Yin Y, Zhou X, Dong L, Liu J (2016) Transformation kinetics of silver nanoparticles and silver ions in aquatic environments revealed by double stable isotope labeling. Environ Sci Nano 3:883–893.  https://doi.org/10.1039/C6EN00104A CrossRefGoogle Scholar
  118. Zahran EM, Bedford NM, Nguyen MA, Chang Y, Guiton BS, Naik RR, Bachas LG, Knecht MR (2014) Light-activated tandem catalysis driven by multicomponent nanomaterials. J Am Chem Soc 136:32–35.  https://doi.org/10.1021/ja410465s CrossRefGoogle Scholar
  119. Zamani H, Moradshahi A, Jahromi HD, Sheikhi MH (2014) Influence of PbS nanoparticle polymer coating on their aggregation behavior and toxicity to the green algae Dunaliella salina. Aquat Toxicol 154:176–183.  https://doi.org/10.1016/j.aquatox.2014.05.012 CrossRefGoogle Scholar
  120. Zhang H, Banfield JF (2004) Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations. Nano Lett 4:713–718.  https://doi.org/10.1021/nl035238a CrossRefGoogle Scholar
  121. Zhang H, Chen B, Banfield JF (2010) Particle size and pH effects on nanoparticle dissolution. J Phys Chem C 114:14876–14884.  https://doi.org/10.1021/jp1060842 CrossRefGoogle Scholar
  122. Zhang S, Qin W, Liu M, Ren X, Hu G, Yuan C, Yang L, Yin S (2018) Facile preparation of Ag-Ag2S hetero-dendrites with high visible light photocatalytic activity. J Mater Sci 53:6482–6493.  https://doi.org/10.1007/s10853-018-2032-y CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang Sci-Tech UniversityHangzhouChina
  2. 2.Department of Environmental and Occupational Health, School of Public HealthTexas A&M UniversityCollege StationUSA

Personalised recommendations