Advertisement

Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1787–1800 | Cite as

Textiles for health: a review of textile fabrics treated with chitosan microcapsules

  • Daniele Massella
  • Stéphane Giraud
  • Jinping Guan
  • Ada Ferri
  • Fabien SalaünEmail author
Review
  • 111 Downloads

Abstract

The textile industry has recently been developing innovative products that integrate functional properties within commodity textiles. In particular, research has focussed on the concept of biofunctional textiles, i.e., textile materials possessing beneficial properties for human health. Biofunctional textiles are synthesised by functionalization of fabric surfaces with biopolymers. As an example, the chitosan biopolymer is promising for textile functionalization due to chitosan availability, low cost, safety and unique properties. Yet several challenges have to be overcome. Firstly, the morphology of chitosan must be optimized prior chitosan application to the textile surface. Secondly, the last treatment must be carefully designed in order to achieve an effective and durable functionalization. Lastly, the overall production process must comply with environmental rules concerning pollution emission and utilization of harmful substances. This review describes microencapsulation as a strategy to overcome limitations and to confer better properties to the textile material. The properties of chitosan and the concept of microencapsulation are presented. Then we present the main techniques of chitosan encapsulation. Furthermore, we detail the textile finishing processes and the textile products. Last, the perspectives are discussed in the context of green chemistry and compliance with an environmentally friendly approach.

Keywords

Chitosan Microencapsulation processes Textile functionalization Finishing treatments Cosmeto-textile Protection 

Notes

Acknowledgements

The research work is supported by the European Union under the framework of Erasmus Mundus joint doctoral program entitled Sustainable Development and Design for Textile (Project SMDTex. 2015-41).

References

  1. AbdElhady MM (2012) Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric. Int J Carbohydr Chem 2012:1–6.  https://doi.org/10.1155/2012/840591 CrossRefGoogle Scholar
  2. Abdel-Halim ES, Abdel-Mohdy FA, Al-Deyab SS, El-Newehy MH (2010) Chitosan and monochlorotriazinyl-β-cyclodextrin finishes improve antistatic properties of cotton/polyester blend and polyester fabrics. Carbohydr Polym 82:202–208.  https://doi.org/10.1016/j.carbpol.2010.04.077 CrossRefGoogle Scholar
  3. Abou-Okeil A, El-Shafie A, Hebeish A (2007) Chitosan phosphate induced better thermal characteristics to cotton fabric. J Appl Polym Sci 103:2021–2026.  https://doi.org/10.1002/app.25322 CrossRefGoogle Scholar
  4. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28.  https://doi.org/10.1016/j.jconrel.2004.08.010 CrossRefGoogle Scholar
  5. Alay Aksoy S, Alkan C, Tözüm MS, Demirbağ S, Altun Anayurt R, Ulcay Y (2016) Preparation and textile application of poly(methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules. J Text I 108:30–41.  https://doi.org/10.1080/00405000.2015.1133128 CrossRefGoogle Scholar
  6. Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83:438–446.  https://doi.org/10.1016/j.carbpol.2010.08.004 CrossRefGoogle Scholar
  7. Alonso D, Gimeno M, Olayo R, Vázquez-Torres H, Sepúlveda-Sánchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77:536–543.  https://doi.org/10.1016/j.carbpol.2009.01.027 CrossRefGoogle Scholar
  8. Alonso D, Gimeno M, Sepulveda-Sanchez JD, Shirai K (2010) Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure. Carbohydr Res 345:854–859.  https://doi.org/10.1016/j.carres.2010.01.018 CrossRefGoogle Scholar
  9. Antunes L, Faustino G, Mouro C, Vaz J, Gouveia IC (2014) Bioactive microsphere-based coating for biomedical-textiles with encapsulated antimicrobial peptides (AMPs). Ciênc Tecnol Mater 26:118–125.  https://doi.org/10.1016/j.ctmat.2015.03.006 CrossRefGoogle Scholar
  10. Argenziano M, Banche G, Luganini A, Finesso N, Allizond V, Gulino GR, Khadjavi A, Spagnolo R, Tullio V, Giribaldi G, Guiot C, Cuffini AM, Prato M, Cavalli R (2017) Vancomycin-loaded nanobubbles: a new platform for controlled antibiotic delivery against methicillin-resistant Staphylococcus aureus infections. Int J Pharm 523:176–188.  https://doi.org/10.1016/j.ijpharm.2017.03.033 CrossRefGoogle Scholar
  11. Ashraf M, Champagne P, Campagne C, Perwuelz A, Dumont F, Leriche A (2014) Study the multi self-cleaning characteristics of ZnO nanorods functionalized polyester fabric. J Ind Text 45:1440–1456.  https://doi.org/10.1177/1528083714562086 CrossRefGoogle Scholar
  12. Bahmani SA, East GC, Holme I (2000) The application of chitosan in pigment printing. Color Technol 116:94–99.  https://doi.org/10.1111/j.1478-4408.2000.tb00027.x CrossRefGoogle Scholar
  13. Basal G, Sirin Deveci S, Yalcin D, Bayraktar O (2011) Properties of n-eicosane-loaded silk fibroin-chitosan microcapsules. J Appl Polym Sci 121:1885–1889.  https://doi.org/10.1002/app.33651 CrossRefGoogle Scholar
  14. Bashari A, Shakeri M, Shirvan AR, Najafabadi SA (2018) Chapter 1: functional finishing of textiles via nanomaterials. In: ul‐Islam S, Butola B (eds) Nanomaterials in the wet processing of textiles. Scrivener Publishing LLC, Beverly, pp 1–70.  https://doi.org/10.1002/9781119459804.ch1 CrossRefGoogle Scholar
  15. Bouwmeester H, van der Zande M, Jepson MA (2018) Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdiscip Rev Nanomed Nanobiotechnol.  https://doi.org/10.1002/wnan.1481 CrossRefGoogle Scholar
  16. Bui V, Park D, Lee Y-C (2017) Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 9:21.  https://doi.org/10.3390/polym9010021 CrossRefGoogle Scholar
  17. Butstraen C, Salaün F (2014) Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr Polym 99:608–616.  https://doi.org/10.1016/j.carbpol.2013.09.006 CrossRefGoogle Scholar
  18. Cauda V, Pugliese D, Garino N, Sacco A, Bianco S, Bella F, Lamberti A, Gerbaldi C (2014) Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures. Energy 65:639–646.  https://doi.org/10.1016/j.energy.2013.12.025 CrossRefGoogle Scholar
  19. Chandrasekar S, Vijayakumar S, Rajendran R (2014) Application of chitosan and herbal nanocomposites to develop antibacterial medical textile. Biomed Aging Pathol 4:59–64.  https://doi.org/10.1016/j.biomag.2013.10.007 CrossRefGoogle Scholar
  20. Chatterjee S, Salaün F, Campagne C, Vaupre S, Beirão A (2012) Preparation of microcapsules with multi-layers structure stabilized by chitosan and sodium dodecyl sulfate. Carbohydr Polym 90:967–975.  https://doi.org/10.1016/j.carbpol.2012.06.028 CrossRefGoogle Scholar
  21. Chatterjee S, Salaün F, Campagne C (2014a) Development of multilayer microcapsules by a phase coacervation method based on ionic interactions for textile applications. Pharmaceutics 6:281–297.  https://doi.org/10.3390/pharmaceutics6020281 CrossRefGoogle Scholar
  22. Chatterjee S, Salaün F, Campagne C (2014b) The influence of 1-butanol and trisodium citrate ion on morphology and chemical properties of chitosan-based microcapsules during rigidification by alkali treatment. Mar Drugs 12:5801–5816.  https://doi.org/10.3390/md12125801 CrossRefGoogle Scholar
  23. Chatterjee S, Salaün F, Campagne C, Vaupre S, Beirão A, El-Achari A (2014c) Synthesis and characterization of chitosan droplet particles by ionic gelation and phase coacervation. Polym Bull 71:1001–1013.  https://doi.org/10.1007/s00289-014-1107-4 CrossRefGoogle Scholar
  24. Chelaru C, Ignat M, Albu M, Meghea A (2015) Polymeric microcapsules for cosmetic applications, based on lemon essential oil. UPB Sci Bull Ser B Chem Mater Sci 77:101–112Google Scholar
  25. Deveci SS, Basal G (2009) Preparation of PCM microcapsules by complex coacervation of silk fibroin and chitosan. Colloid Polym Sci 287:1455–1467.  https://doi.org/10.1007/s00396-009-2115-z CrossRefGoogle Scholar
  26. Divya K, Vijayan S, George TK, Jisha MS (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fiber Polym 18:221–230.  https://doi.org/10.1007/s12221-017-6690-1 CrossRefGoogle Scholar
  27. Donalisio M, Leone F, Civra A, Spagnolo R, Ozer O, Lembo D, Cavalli R (2018) Acyclovir-loaded chitosan nanospheres from nano-emulsion templating for the topical treatment of herpesviruses infections. Pharmaceutics.  https://doi.org/10.3390/pharmaceutics10020046 CrossRefGoogle Scholar
  28. Dotti F, Ferri A, Moncalero M, Colonna M (2016) Thermo-physiological comfort of soft-shell back protectors under controlled environmental conditions. Appl Ergon 56:144–152.  https://doi.org/10.1016/j.apergo.2016.04.002 CrossRefGoogle Scholar
  29. Doumbia AS, Vezin H, Ferreira M, Campagne C, Devaux E (2015) Studies of polylactide/zinc oxide nanocomposites: influence of surface treatment on zinc oxide antibacterial activities in textile nanocomposites. J Appl Polym Sci.  https://doi.org/10.1002/app.41776 CrossRefGoogle Scholar
  30. Fan F, Zhang W, Wang C (2015) Covalent bonding and photochromic properties of double-shell polyurethane-chitosan microcapsules crosslinked onto cotton fabric. Cellulose 22:1427–1438.  https://doi.org/10.1007/s10570-015-0567-5 CrossRefGoogle Scholar
  31. Fei B, Xin JH (2007) N,N-diethyl-m-toluamide–containing microcapsules for bio-cloth finishing. Am J Trop Med Hyg 77:52–57.  https://doi.org/10.4269/ajtmh.2007.77.52 CrossRefGoogle Scholar
  32. Fornasiero F (2017) Water vapor transport in carbon nanotube membranes and application in breathable and protective fabrics. Curr Opin Chem Eng 16:1–8.  https://doi.org/10.1016/j.coche.2017.02.001 CrossRefGoogle Scholar
  33. Garud A, Garud N (2010) Preparation and evaluation of chitosan microcapsules of metronidazole using tripolyphosphate cross-linking method. Dhaka Univ J Pharm Sci 9:125–130.  https://doi.org/10.3329/dujps.v9i2.7897 CrossRefGoogle Scholar
  34. Genç E, Alay Aksoy S (2016) Fabrication of microencapsulated PCMs with nanoclay doped chitosan shell and their application to cotton fabric. Teks Konfeksiyon 26:180–188Google Scholar
  35. Gordon N (2001) Microencapsulation in textile finishing. Rev Prog Color Relat Top 31:57–64.  https://doi.org/10.1111/j.1478-4408.2001.tb00138.x CrossRefGoogle Scholar
  36. Hassan MM, Sunderland M (2015) Antimicrobial and insect-resist wool fabrics by coating with microencapsulated antimicrobial and insect-resist agents. Prog Org Coat 85:221–229.  https://doi.org/10.1016/j.porgcoat.2015.04.016 CrossRefGoogle Scholar
  37. Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244.  https://doi.org/10.1016/s0168-1605(01)00609-2 CrossRefGoogle Scholar
  38. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA, Ashraf GM (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18:120–128.  https://doi.org/10.2174/1389200217666161201111146 CrossRefGoogle Scholar
  39. Hsieh F-M, Huang C, Lin T-F, Chen Y-M, Lin J-C (2008) Study of sodium tripolyphosphate-crosslinked chitosan beads entrapped with Pseudomonas putida for phenol degradation. Process Biochem 43:83–92.  https://doi.org/10.1016/j.procbio.2007.10.016 CrossRefGoogle Scholar
  40. Hu J, Xiao Z-B, Zhou R-J, Ma S-S, Li Z, Wang M-X (2011) Comparison of compounded fragrance and chitosan nanoparticles loaded with fragrance applied in cotton fabrics. Text Res J 81:2056–2064.  https://doi.org/10.1177/0040517511416274 CrossRefGoogle Scholar
  41. Hu S, Song L, Pan H, Hu Y (2012) thermal properties and combustion behaviors of chitosan based flame retardant combining phosphorus and nickel. Ind Eng Chem Res 51:3663–3669.  https://doi.org/10.1021/ie2022527 CrossRefGoogle Scholar
  42. Huang K-S, Wu W-J, Chen J-B, Lian H-S (2008) Application of low-molecular-weight chitosan in durable press finishing. Carbohydr Polym 73:254–260.  https://doi.org/10.1016/j.carbpol.2007.11.023 CrossRefGoogle Scholar
  43. Hui PC, Wang WY, Kan CW, Ng FS, Wat E, Zhang VX, Chan CL, Lau CB, Leung PC (2013) Microencapsulation of traditional Chinese herbs-pentaherbs extracts and potential application in healthcare textiles. Colloids Surf B Biointerfaces 111:156–161.  https://doi.org/10.1016/j.colsurfb.2013.05.036 CrossRefGoogle Scholar
  44. Javid A, Raza ZA, Hussain T, Rehman A (2014) Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric. J Microencapsul 31:461–468.  https://doi.org/10.3109/02652048.2013.879927 CrossRefGoogle Scholar
  45. Kasaai MR (2010) Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: a review. Carbohydr Polym 79:801–810.  https://doi.org/10.1016/j.carbpol.2009.10.051 CrossRefGoogle Scholar
  46. Khadjavi A, Magnetto C, Panariti A, Argenziano M, Gulino GR, Rivolta I, Cavalli R, Giribaldi G, Guiot C, Prato M (2015) Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: new insights for chronic wound healing. Toxicol Appl Pharmacol 286:198–206.  https://doi.org/10.1016/j.taap.2015.04.015 CrossRefGoogle Scholar
  47. Kondo A (1979) Microcapsule processing and technology. Marcel Dekker, New YorkGoogle Scholar
  48. Konuklu Y, Paksoy HO (2015) The preparation and characterization of chitosan-gelatin microcapsules and microcomposites with fatty acids as thermal energy storage materials. Energy Technol 3:503–508.  https://doi.org/10.1002/ente.201402178 CrossRefGoogle Scholar
  49. Kovach I, Won J, Friberg SE, Koetz J (2016) Completely engulfed olive/silicone oil Janus emulsions with gelatin and chitosan. Colloid Polym Sci 294:705–713.  https://doi.org/10.1007/s0039601638284 CrossRefGoogle Scholar
  50. Kulkarni A, Tourrette A, Warmoeskerken MMCG, Jocic D (2010) Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton. Carbohydr Polym 82:1306–1314.  https://doi.org/10.1016/j.carbpol.2010.07.011 CrossRefGoogle Scholar
  51. Lam PL, Li L, Yuen CWM, Gambari R, Wong RSM, Chui CH, Lam KH (2013) Effects of multiple washing on cotton fabrics containing berberine microcapsules with anti-Staphylococcus aureus activity. J Microencaps 30:143–150.  https://doi.org/10.3109/02652048.2012.704953 CrossRefGoogle Scholar
  52. Laufer G, Kirkland C, Morgan AB, Grunlan JC (2012) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromol 13:2843–2848.  https://doi.org/10.1021/bm300873b CrossRefGoogle Scholar
  53. Laurenti M, Cauda V (2017) ZnO nanostructures for tissue engineering applications. Nanomaterials (Basel).  https://doi.org/10.3390/nano7110374 CrossRefGoogle Scholar
  54. Leistner M, Abu-Odeh AA, Rohmer SC, Grunlan JC (2015) Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric. Carbohydr Polym 130:227–232.  https://doi.org/10.1016/j.carbpol.2015.05.005 CrossRefGoogle Scholar
  55. Li Y, Ai L, Yokoyama W, Shoemaker CF, Wei D, Ma J, Zhong F (2013) Properties of chitosan-microencapsulated orange oil prepared by spray-drying and its stability to detergents. J Agric Food Chem 61:3311–3319.  https://doi.org/10.1021/jf305074q CrossRefGoogle Scholar
  56. Li J, Wu Y, Zhao L (2016) Antibacterial activity and mechanism of chitosan with ultra high molecular weight. Carbohydr Polym 148:200–205.  https://doi.org/10.1016/j.carbpol.2016.04.025 CrossRefGoogle Scholar
  57. Liu J, Liu C, Liu Y, Chen M, Hu Y, Yang Z (2013) Study on the grafting of chitosan-gelatin microcapsules onto cotton fabrics and its antibacterial effect. Colloids Surf B Biointerfaces 109:103–108.  https://doi.org/10.1016/j.colsurfb.2013.03.040 CrossRefGoogle Scholar
  58. Maji TK, Hussain MR (2008) Microencapsulation of zanthoxylum limonellaoil (ZLO) in genipin crosslinked chitosan-gelatin complex for mosquito repellent application. J Appl Polym Sci 111:779–785.  https://doi.org/10.1002/app.29001 CrossRefGoogle Scholar
  59. Martí M, Rodríguez R, Carreras N, Lis M, Valldeperas J, Coderch L, Parra JL (2012) Monitoring of the microcapsule/liposome application on textile fabrics. J Text I 103:19–27.  https://doi.org/10.1080/00405000.2010.542011 CrossRefGoogle Scholar
  60. Massella D, Leone F, Peila R, Barresi AA, Ferri A (2017) Functionalization of cotton fabrics with polycaprolactone nanoparticles for transdermal release of melatonin. J Funct Biomater.  https://doi.org/10.3390/jfb9010001 CrossRefGoogle Scholar
  61. Massella D, Ancona A, Garino N, Cauda V, Guan J, Salaun F, Barresi AA, Ferri A (2018a) Preparation of bio-functional textiles by surface functionalization of cellulose fabrics with caffeine loaded nanoparticles. IOP Conf Ser Mater Sci Eng 460:012044.  https://doi.org/10.1088/1757-899x/460/1/012044 CrossRefGoogle Scholar
  62. Massella D, Celasco E, Salaün F, Ferri A, Barresi AA (2018b) Overcoming the limits of flash nanoprecipitation: effective loading of hydrophilic drug into polymeric nanoparticles with controlled structure. Polymers.  https://doi.org/10.3390/polym10101092 CrossRefGoogle Scholar
  63. Massella D, Giraud S, Guan J, Ferri A, Salaün F (2019) Chapter 8: manufacture techniques of chitosan based microcapsules to enhance functional properties of textiles. In: Crini G, Lichtfouse E (eds) Chitin and chitosan: history, fundamentals and innovations. Springer, BerlinGoogle Scholar
  64. Mathis R, Mehling A (2011) Chapter 6: textiles with cosmetic effects. In: Bartels VT (ed) Handbook of medical textiles. Woodhead Publishing, Cambridge, pp 153–172.  https://doi.org/10.1533/9780857093691.1.153 CrossRefGoogle Scholar
  65. Mihailiasa M, Caldera F, Li J, Peila R, Ferri A, Trotta F (2016) Preparation of functionalized cotton fabrics by means of melatonin loaded beta-cyclodextrin nanosponges. Carbohydr Polym 142:24–30.  https://doi.org/10.1016/j.carbpol.2016.01.024 CrossRefGoogle Scholar
  66. Monllor P, Bonet MA, Cases F (2007) Characterization of the behaviour of flavour microcapsules in cotton fabrics. Eur Polym J 43:2481–2490.  https://doi.org/10.1016/j.eurpolymj.2007.04.004 CrossRefGoogle Scholar
  67. Morais DS, Guedes RM, Lopes MA (2016) Antimicrobial approaches for textiles: from research to market. Materials (Basel).  https://doi.org/10.3390/ma9060498 CrossRefGoogle Scholar
  68. Mostafalu P, Kiaee G, Giatsidis G, Khalilpour A, Nabavinia M, Dokmeci MR, Sonkusale S, Orgill DP, Tamayol A, Khademhosseini A (2017) A textile dressing for temporal and dosage controlled drug delivery. Adv Funct Mater 27:1702399.  https://doi.org/10.1002/adfm.201702399 CrossRefGoogle Scholar
  69. Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77:1–9.  https://doi.org/10.1016/j.carbpol.2009.01.016 CrossRefGoogle Scholar
  70. Nada A, Al-Moghazy M, Soliman AAF, Rashwan GMT, Eldawy THA, Hassan AAE, Sayed GH (2018) Pyrazole-based compounds in chitosan liposomal emulsion for antimicrobial cotton fabrics. Int J Biol Macromol 107:585–594.  https://doi.org/10.1016/j.ijbiomac.2017.09.031 CrossRefGoogle Scholar
  71. Ocak B (2012) Complex coacervation of collagen hydrolysate extracted from leather solid wastes and chitosan for controlled release of lavender oil. J Environ Manage 100:22–28.  https://doi.org/10.1016/j.jenvman.2012.01.026 CrossRefGoogle Scholar
  72. Parisi OI, Scrivano L, Sinicropi MS, Puoci F (2017) Polymeric nanoparticle constructs as devices for antibacterial therapy. Curr Opin Pharm 36:72–77.  https://doi.org/10.1016/j.coph.2017.08.004 CrossRefGoogle Scholar
  73. Paulo BB, Andreola K, Taranto O, Ferreira AD, Prata AS (2018) Coating approach for a phase change material (PCM). Powder Technol.  https://doi.org/10.1016/j.powtec.2018.03.003 CrossRefGoogle Scholar
  74. Pedro AS, Cabral-Albuquerque E, Ferreira D, Sarmento B (2009) Chitosan: an option for development of essential oil delivery systems for oral cavity care? Carbohydr Polym 76:501–508.  https://doi.org/10.1016/j.carbpol.2008.12.016 CrossRefGoogle Scholar
  75. Peila R, Scordino P, Shanko DB, Caldera F, Trotta F, Ferri A (2017) Synthesis and characterization of β-cyclodextrin nanosponges for N,N-diethyl-meta-toluamide complexation and their application on polyester fabrics. React Funct Polym 119:87–94.  https://doi.org/10.1016/j.reactfunctpolym.2017.08.008 CrossRefGoogle Scholar
  76. Perelshtein I, Ruderman E, Perkas N, Tzanov T, Beddow J, Joyce E, Mason TJ, Blanes M, Mollá K, Patlolla A, Frenkel AI, Gedanken A (2013) Chitosan and chitosan–ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity. J Mater Chem B 1:1968.  https://doi.org/10.1039/c3tb00555k CrossRefGoogle Scholar
  77. Poncelet D, Dreffier C, Subra-Paternault P, Vandamme TF (2007) Chapter: introduction aux techniques de microencapsulation. In: Vandamme TF, Poncelet D, Subra-Paternault P (eds) Microencapsulation Des Sciences aux technologies. Éd. Tec & Doc, Paris, pp 1–7Google Scholar
  78. Prata AS, Grosso CRF (2015) Production of microparticles with gelatin and chitosan. Carbohydr Polym 116:292–299.  https://doi.org/10.1016/j.carbpol.2014.03.056 CrossRefGoogle Scholar
  79. Rajendran R, Radhai R, Balakumar C, Hasabo AMA, Vigneswaran C, Vaideki K (2012) Synthesis and characterization of neem chitosan nanocomposites for development of antimicrobial cotton textiles. J Eng Fiber Fabr 7:136–141Google Scholar
  80. Ramadan MA, Samy S, Hebeish AA (2011) Chapter 1: eco-friendly pretreatment of cellulosic fabrics with chitosan and its influence on dyeing efficiency. In: Kumbasar EPA (ed) Natural dyes. IntechOpen, London, pp 3–12.  https://doi.org/10.5772/20097 CrossRefGoogle Scholar
  81. Rana V, Babita K, Goyal D, Tiwary A (2004) Sodium citrate cross-linked chitosan films: optimization as substitute for human/rat/rabbit epidermal sheets. J Pharm Pharm Sci 8:10–17Google Scholar
  82. Ristić T, Zabret A, Zemljič LF, Peršin Z (2016) Chitosan nanoparticles as a potential drug delivery system attached to viscose cellulose fibers. Cellulose 24:739–753.  https://doi.org/10.1007/s10570-016-1125-5 CrossRefGoogle Scholar
  83. Roy JC, Ferri A, Giraud S, Jinping G, Salaun F (2018a) Chitosan-carboxymethylcellulose-based polyelectrolyte complexation and microcapsule shell formulation. Int J Mol Sci.  https://doi.org/10.3390/ijms19092521 CrossRefGoogle Scholar
  84. Roy JC, Giraud S, Ferri A, Mossotti R, Guan J, Salaün F (2018b) Influence of process parameters on microcapsule formation from chitosan—type B gelatin complex coacervates. Carbohydr Polym 198:281–293.  https://doi.org/10.1016/j.carbpol.2018.06.087 CrossRefGoogle Scholar
  85. Rubio L, Alonso C, Coderch L, Parra JL, Martí M, Cebrián J, Navarro JA, Lis M, Valldeperas J (2010) Skin delivery of caffeine contained in biofunctional textiles. Text Res J 80:1214–1221.  https://doi.org/10.1177/0040517509358798 CrossRefGoogle Scholar
  86. Ruocco N, Costantini S, Guariniello S, Costantini M (2016) Polysaccharides from the marine environment with pharmacological. Cosmeceut Nutraceut Potential Mol.  https://doi.org/10.3390/molecules21050551 CrossRefGoogle Scholar
  87. Salaün F (2016) Chapter 9: microencapsulation technology for smart textile coatings. In: Hu J (ed) Active coatings for smart textiles. Woodhead Publishing, Cambridge, pp 179–220.  https://doi.org/10.1016/B978-0-08-100263-6.00009-5 CrossRefGoogle Scholar
  88. Samimi Gharaie S, Habibi S, Nazockdast H (2018) Fabrication and characterization of chitosan/gelatin/thermoplastic polyurethane blend nanofibers. J Text Fibr Mater 1:251522111876932.  https://doi.org/10.1177/2515221118769324 CrossRefGoogle Scholar
  89. Scacchetti FAP, Pinto E, Soares GMB (2018) Thermal and antimicrobial evaluation of cotton functionalized with a chitosan-zeolite composite and microcapsules of phase-change materials. J Appl Polym Sci 135:46135.  https://doi.org/10.1002/app.46135 CrossRefGoogle Scholar
  90. Shah T, Halacheva S (2016) Chapter 6:Drug-releasing textiles. In: van Langenhove L (ed) Advances in smart medical textiles. Woodhead Publishing, Cambridge, pp 119–154.  https://doi.org/10.1016/B978-1-78242-379-9.00006-2 CrossRefGoogle Scholar
  91. Sharkawy A, Fernandes IP, Barreiro MF, Rodrigues AE, Shoeib T (2017) Aroma-loaded microcapsules with antibacterial activity for eco-friendly textile application: synthesis, characterization, release, and green grafting. Ind Eng Chem Res 56:5516–5526.  https://doi.org/10.1021/acs.iecr.7b00741 CrossRefGoogle Scholar
  92. Souza JM, Caldas AL, Tohidi SD, Molina J, Souto AP, Fangueiro R, Zille A (2014a) Properties and controlled release of chitosan microencapsulated limonene oil. Braz J Pharmacogn 24:691–698.  https://doi.org/10.1016/j.bjp.2014.11.007 CrossRefGoogle Scholar
  93. Souza JM, Caldas AL, Tohidi SD, Molina J, Souto AP, Fangueiro R, Zille A (2014b) Properties and controlled release of chitosan microencapsulated limonene oil. Rev Bras Farmacogn 24:691–698.  https://doi.org/10.1016/j.bjp.2014.11.007 CrossRefGoogle Scholar
  94. Specos MMM, García JJ, Tornesello J, Marino P, Vecchia MD, Tesoriero MVD, Hermida LG (2010) Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg 104:653–658.  https://doi.org/10.1016/j.trstmh.2010.06.004 CrossRefGoogle Scholar
  95. Stegmaier T, Wunderlich W, Hager T, Siddique AB, Sarsour J, Planck H (2008) Chitosan: a sizing agent in fabric production—development and ecological evaluation. Clean 36:279–286.  https://doi.org/10.1002/clen.200700013 CrossRefGoogle Scholar
  96. Tokatlı K, Demirdöven A (2018) Optimization of chitin and chitosan production from shrimp wastes and characterization. J Food Process Preserv 42:e13494.  https://doi.org/10.1111/jfpp.13494 CrossRefGoogle Scholar
  97. Wang Z, Zheng L, Li C, Wu S, Xiao Y (2017) Preparation and antimicrobial activity of sulfopropyl chitosan in an ionic liquid aqueous solution. J Appl Polym Sci.  https://doi.org/10.1002/app.44989 CrossRefGoogle Scholar
  98. Wijesirigunawardana PB, Perera BG (2018) Development of a cotton smart textile with medicinal properties using lime oil microcapsules. Acta Chim Slov 65:150–159CrossRefGoogle Scholar
  99. Yadav SK, Suresh AK, Khilar KC (1990) Microencapsulation in polyurea shell by interfacial polycondensation. AIChE J 36:431–438.  https://doi.org/10.1002/aic.690360312 CrossRefGoogle Scholar
  100. Yang Z, Song B, Li Q, Fan H, Ouyang F (2004) Effects of surfactant and acid type on preparation of chitosan microcapsules. China Particuol 2:70–75.  https://doi.org/10.1016/S1672-2515(07)60026-8 CrossRefGoogle Scholar
  101. Yang Z, Zeng Z, Xiao Z, Ji H (2014) Preparation and controllable release of chitosan/vanillin microcapsules and their application to cotton fabric. Flavour Fragr J 29:114–120.  https://doi.org/10.1002/ffj.3186 CrossRefGoogle Scholar
  102. Yang K, Jiao M, Wang S, Yu Y, Diao Q, Cao J (2018) Thermoregulation properties of composite phase change materials in high temperature environmental conditions. Int J Cloth Sci Technol 30:507–516.  https://doi.org/10.1108/ijcst-11-2017-0173 CrossRefGoogle Scholar
  103. Yip J, Luk MYA (2016) Chapter: microencapsulation technologies for antimicrobial textiles. In: Sun G (ed) Antimicrobial textiles. Woodhead Publishing, Cambridge, pp 19–46.  https://doi.org/10.1016/b978-0-08-100576-7.00003-1 CrossRefGoogle Scholar
  104. Yuan G, Cranston R (2008) Recent advances in antimicrobial treatments of textiles. Text Res J 78:60–72.  https://doi.org/10.1177/0040517507082332 CrossRefGoogle Scholar
  105. Yuen CW, Kan CW, Cheuk KL, Cheung HC, Cheng SY, Yip J, Lam PL (2012) Development of miconazole nitrate containing chitosan microcapsules and their anti-Aspergillus niger activity. J Microencapsul 29:505–510.  https://doi.org/10.3109/02652048.2011.642017 CrossRefGoogle Scholar
  106. Zemljič LF, Peršin Z, Šauperl O, Rudolf A, Kostić M (2017) Medical textiles based on viscose rayon fabrics coated with chitosan-encapsulated iodine: antibacterial and antioxidant properties. Text Res J 88:2519–2531.  https://doi.org/10.1177/0040517517725117 CrossRefGoogle Scholar
  107. Zhang Y, Wang X, Xu C, Yan W, Tian Q, Sun Z, Yao H, Gao J (2018) Fabrication of chitosan gel droplets via crosslinking of inverse pickering emulsifications. Carbohydr Polym 186:1–8.  https://doi.org/10.1016/j.carbpol.2017.12.062 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied Science and TechnologyPolitecnico di TorinoTurinItaly
  2. 2.College of Textile and Clothing EngineeringSoochow UniversitySuzhouChina
  3. 3.GEMTEX - Laboratoire de Génie et Matériaux TextilesENSAITLilleFrance

Personalised recommendations