Advertisement

Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1881–1888 | Cite as

The metribuzin herbicide in polycaprolactone nanocapsules shows less plant chromosome aberration than non-encapsulated metribuzin

  • Marjan DiyanatEmail author
  • Hamid Saeidian
Original Paper
  • 50 Downloads

Abstract

The excessive use of the metribuzin herbicide is contaminating groundwater and damaging non-target plants and organisms. There is therefore a need for safer formulations of the herbicide. Here we encapsulated metribuzin by interfacial deposition of the pre-formed polymer. Results show that the encapsulation efficiency of metribuzin reached 83.2%. Nanocapsules remained stable in the suspension without any aggregation or decomposition. Nanocapsules containing metribuzin induced less chromosome aberration and higher mitotic index values than the pure metribuzin. We conclude that herbicide encapsulation in polycaprolactone nanocapsules is safer for food and the environment.

Keywords

Genotoxicity Metribuzin Nanoformulation Polydispersity index Polycaprolactone nanocapsules 

Notes

Acknowledgements

The authors thank Iran National Science Foundation (INSF) for financial support (Grant No. 95834912).

Compliance with ethical standards

Conflicts of interest

All authors declare that they have no conflict of interest.

Supplementary material

10311_2019_912_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1252 kb)

References

  1. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. http://www.microbialcellfactories.com/content/13/1/66 CrossRefGoogle Scholar
  2. Carlson CG, Clay D (2016) Chapter 34: Estimating corn seedling emergence and variability. In: Clay DE, Carlson CG, Clay SA, Byamukama E (eds) Grow corn: best management practices. South Dakota State UniversityGoogle Scholar
  3. Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valério MJ, Silva A, Ferreira M, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and ground waters. Water Res 37:1055–1063.  https://doi.org/10.1016/S0043-1354(01)00462-6 CrossRefGoogle Scholar
  4. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335.  https://doi.org/10.1016/S0079-6700(97)00039-7 CrossRefGoogle Scholar
  5. Chowdhury MA (2014) The controlled release of bioactive compounds from lignin and lignin-based biopolymer matrices. Int J Biol Macromol 65:136–147.  https://doi.org/10.1016/j.ijbiomac.2014.01.012 CrossRefGoogle Scholar
  6. Clemente Z, Grillo R, Jonsson C, Santos NZP, Feitosa LOL, Fraceto RLF (2014) Ecotoxicological evaluation of poly(epsilon-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14:4911–4917.  https://doi.org/10.1166/jnn.2014.8681 CrossRefGoogle Scholar
  7. da Silva Gündel S, dos Reisb TR, Copettic PM, Favarina FR, Sagrilloc MR, da Silva AS, Segatb JC, Barettab D, Ouriquea AF (2019) Evaluation of cytotoxicity, genotoxicity and ecotoxicity of nanoemulsions containing Mancozeb and Eugenol. Ecotox Environ Safe 169:207–215.  https://doi.org/10.1016/j.ecoenv.2018.11.023 CrossRefGoogle Scholar
  8. Dash TK, Konkimalla VB (2012) Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158:15–33.  https://doi.org/10.1016/j.jconrel.2011.09.064 CrossRefGoogle Scholar
  9. de Melo NFS, Grillo R, Guilherme VA, de Araujo DR, de Paula E, Rosa AH, Fraceto LF (2011) Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition of the oily nucleus on physicochemical properties and anesthetic activity. Pharm Res 28:1984–1994.  https://doi.org/10.1007/s11095-011-0425-6 CrossRefGoogle Scholar
  10. de Oliveira JL, Campos EV, Gonçalves CM, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63:422–432.  https://doi.org/10.1021/jf5059045 CrossRefGoogle Scholar
  11. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112.  https://doi.org/10.1007/s10311-017-0670-y CrossRefGoogle Scholar
  12. Dores EFGC, Carbo L, Ribeiro ML, De-Lamonica-Freire EM (2008) Pesticide levels in ground and surface waters of Primavera do Leste Region, Mato Grosso. Brazil J Chromatogr Sci 46:585–590.  https://doi.org/10.1093/chromsci/46.7.585 CrossRefGoogle Scholar
  13. Fernandez-Perez M, Villafranca-Sanchez M, Flores-Cespedes F, Perez-Garcıa S, Daza-Fernandez I (2010) Prevention of chloridazon and metribuzin pollution using lignin-based formulations. Environ Pollut 158:1412–1419.  https://doi.org/10.1016/j.envpol.2009.12.040 CrossRefGoogle Scholar
  14. Fernandez-Perez M, Villafranca-Sanchez M, Flores-Cespedes F, Daza-Fernande I (2015) Lignin-polyethylene glycol matrices and ethylcellulose to encapsulate highly soluble herbicides. J Appl Polym Sci 132:1–9.  https://doi.org/10.1002/app.41422 CrossRefGoogle Scholar
  15. Fleming GF, Simmons W, Wax LM, Wing RE, Carr ME (1992) Atrazine movement in soil columns as influenced by starch-encapsulation. Weed Sci 40:465–470.  https://doi.org/10.1017/S0043174500051924 CrossRefGoogle Scholar
  16. Flores-Cespedes F, Perez-Garcia S, Villafranca-Sanchez M, Fernandez-Perez M (2013) Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil. Chemosphere 92:918–924.  https://doi.org/10.1016/j.chemosphere.2013.03.001 CrossRefGoogle Scholar
  17. Flores-Céspedesa F, Daza-Fernándeza I, Villafranca-Sáncheza M, Fernández-Péreza M, Morillob E, Undabeytia T (2018) Lignin and ethylcellulose in controlled release formulations to reduce leaching of chloridazon and metribuzin in light-textured soils. J Hazard Mater 343:227–234.  https://doi.org/10.1016/j.jhazmat.2017.09.012 CrossRefGoogle Scholar
  18. Gill JPK, Sethi N, Mohan A, Datta S, Girdhar M (2018) Glyphosate toxicity for animals. Environ Chem Lett 16:401–426.  https://doi.org/10.1007/s10311-017-0689-0 CrossRefGoogle Scholar
  19. Goodrich JA, Benjamin WLJ, Robert MC (1991) Drinking water from agriculturally contaminated groundwater. J Environ Qual 20:707–717.  https://doi.org/10.2134/jeq1991.00472425002000040001x CrossRefGoogle Scholar
  20. Grillo R, de Melo NFS, de Lima R, Lourenco RW, Rosa AH, Fraceto LF (2010) Characterization of atrazine-loaded biodegradable poly(hydroxybutyrate-cohydroxyvalerate) microspheres. J Polym Environ 18:26–32.  https://doi.org/10.1007/s10924-009-0153-8 CrossRefGoogle Scholar
  21. Grillo R, dos Santos NZ, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly(ε-caprolactone) nanocapsules as carrier systems for herbicides: physicochemical characterization and genotoxicity evaluation. J Hazard Mater 23:1–9.  https://doi.org/10.1016/j.jhazmat.2012.06.019 CrossRefGoogle Scholar
  22. Grillo RA, Pereira ES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171.  https://doi.org/10.1016/j.jhazmat.2014.05.079 CrossRefGoogle Scholar
  23. Gupta PK (2004) Pesticide exposure—Indian scene. Toxicology 98:83–90.  https://doi.org/10.1016/j.tox.2004.01.021 CrossRefGoogle Scholar
  24. Guterres SS, Poletto FS, Colome´ LM, Raffin RP, Pohlmann AR (2010) Polymeric nanocapsules for drug delivery an overview. In: Fanun M (ed) Colloids in drug delivery. CRC Press, Boca Raton.  https://doi.org/10.1201/9781439818268-c3 CrossRefGoogle Scholar
  25. Haarstad K, Ludvigsen GH (2007) Ten years of pesticide monitoring in Norwegian ground water. Ground Water Monit Remediat 27:75–89.  https://doi.org/10.1111/j.1745-6592.2007.00153.x CrossRefGoogle Scholar
  26. Jacobsen CS, van der Keur P, Iversen BV, Rosenberg P, Barlebo HC, Torp S, Vosgerau H, Juhler RK, Ernstsen V, Rasmussen J, Brinch UC, Jacobsen OH (2008) Variation of MCPA, metribuzin, methyltriazine-amine and glyphosate degradation, sorption, mineralization and leaching in different soil horizons. Environ Pollut 156:794–802.  https://doi.org/10.1016/j.envpol.2008.06.002 CrossRefGoogle Scholar
  27. Jørgensen LF, Stockmarr J (2009) Groundwater monitoring in Denmark: characteristics, perspectives and comparison with other countries. Hydrogeol J 17:827–842.  https://doi.org/10.1007/s10040-008-0398-7 CrossRefGoogle Scholar
  28. Kumar J, Nisar K, Shakil NA, Walia S, Parsad R (2010) Controlled release formulations of metribuzin: release kinetics in water and soil. J Environ Sci Health B 45:330–335.  https://doi.org/10.1080/03601231003704424 CrossRefGoogle Scholar
  29. Madhura L, Singh S, Kanchi M, Sabela S, Bisetty K, Inamuddin (2019) Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett 17:65–121.  https://doi.org/10.1007/s10311-018-0778-8 CrossRefGoogle Scholar
  30. Majumdar K, Singh N (2007) Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 66:630–637.  https://doi.org/10.1016/j.chemosphere.2006.07.095 CrossRefGoogle Scholar
  31. Maqueda C, Partal P, Villaverde J, Perez-Rodriguez JL (2009) Characterization of sepiolite-gel-based formulations for con- trolled release of pesticides. Appl Clay Sci 46:289–295.  https://doi.org/10.1016/j.clay.2009.08.019 CrossRefGoogle Scholar
  32. Mochizuki M, Hirami M (1997) Structural effects on biodegradation of aliphatic polyesters. Polym Adv Technol 8:203–209.  https://doi.org/10.1002/(SICI)1099-1581(199704)8:4%3c203:AID-PAT627%3e3.0.CO;2-3 CrossRefGoogle Scholar
  33. Mohanraj VJ, Chen Y (2006) Nanoparticles—A review. Trop J Pharm Res 5:561–573.  https://doi.org/10.4314/tjpr.v5i1.14634 CrossRefGoogle Scholar
  34. Mora-Huertas CE, Fessi H, Elaissar IA (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142.  https://doi.org/10.1016/j.ijpharm.2009.10.018 CrossRefGoogle Scholar
  35. Namasivayam SKR, Aruna A (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9:19–27Google Scholar
  36. Peek D, Appleby AP (1991) Phytotoxicity, adsorption, and mobility of metribuzin and its ethylthio analog as influenced by soil properties. Weed Sci 37:419–423.  https://doi.org/10.1017/S0043174500072155 CrossRefGoogle Scholar
  37. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (ε-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215.  https://doi.org/10.1016/j.jhazmat.2014.01.025 CrossRefGoogle Scholar
  38. Ping KY, Darah I, Yusuf UK, Yeng C, Sasidharan S (2012) Genotoxicity of Euphorbia hirta: an Allium cepa assay. Molecules 17:7782–7791.  https://doi.org/10.3390/molecules17077782 CrossRefGoogle Scholar
  39. Pot V, Benoit P, Menn ML, Eklo OM, Sveistrup T, Kværner J (2011) Metribuzin transport in undisturbed soil cores under controlled water potential conditions: experiments and modelling to evaluate the risk of leaching in a sandy loam soil profile. Pest Manag Sci 67:397–407.  https://doi.org/10.1002/ps.2077 CrossRefGoogle Scholar
  40. Sabir MI, Xu XX, Li LA (2009) Review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724.  https://doi.org/10.1007/s10853-009-3770-7 CrossRefGoogle Scholar
  41. Sahoo S, Manjaiah KM, Datta SC, Ahmed Shabeer TP, Kumar J (2014) Kinetics of metribuzin release from bentonite-polymer composites in water. J Environ Sci Health B 49:591–600.  https://doi.org/10.1080/03601234.2014.911578 CrossRefGoogle Scholar
  42. Schaffazick SR, Guterres SSU, Freitas LD, Pohlmann AR (2003) Physicochemical characterization and stability of the polymeric nanoparticle systems for drug administration. Quim Nova 26:726–737.  https://doi.org/10.1590/S0100-40422003000500017 CrossRefGoogle Scholar
  43. Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237.  https://doi.org/10.1007/s10311-017-0665-8 CrossRefGoogle Scholar
  44. Soltani N, Deen B, Bowley S, Sikkema PH (2005) Effects of pre-emergence applications of flufenacet plus metribuzin on weeds and soybean (Glycine max). Crop Prot 24:507–511.  https://doi.org/10.1016/j.cropro.2004.09.018 CrossRefGoogle Scholar
  45. Sousa GFM, Gomes DG, Campos EVR, de Oliveira JL, Fraceto LF, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:1–6.  https://doi.org/10.3389/fenvs.2018.00012 CrossRefGoogle Scholar
  46. Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270:76–78.  https://doi.org/10.1038/270076a0 CrossRefGoogle Scholar
  47. Tong Y, Wu Y, Zhao C, Xu Y, Lu J, Xiang S, Zong F, Wu X (2017) Polymeric nanoparticles as a metolachlor carrier: water-based formulation for hydrophobic pesticides and absorption by plants. J Agric Food Chem 65:7371–7378.  https://doi.org/10.1021/acs.jafc.7b02197 CrossRefGoogle Scholar
  48. Undabeytia T, Recio E, Maqueda C, Morillo E, Gomez-Pantoja E, Sanchez-Verdejo T (2011) Reducedmetribuzin pollution with phosphatidylcholine–clay formulations. Pest Manag Sci 67:271–278.  https://doi.org/10.1002/ps.2060 CrossRefGoogle Scholar
  49. Villafranca-Sanchez M, Flores-Cespedes F, Daza-Fernandez I, Fernandez-Perez M (2011) Prevention of herbicides pollution using sorbents in controlled release formulations. In: A. Kortekamp (ed.), Herbicides and environment. IntechOpen.  https://doi.org/10.5772/13477 Google Scholar
  50. Zhang X, Lai Z, Liu Z, Tan C, Huang Y, Li B, Zhao M, Xie L, Huang W, Zhang H (2015) A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angewandte Chemie Int Ed 54:5425–5428.  https://doi.org/10.1002/anie.201501071 CrossRefGoogle Scholar
  51. Zhila N, Murueva A, Shershneva A, Shishatskaya E, Volova T (2017) Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds. J Environ Sci Health B 52(10):729–735.  https://doi.org/10.1080/03601234.2017.1356668 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Agricultural Science and Food Industries, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of SciencePayame Noor University (PNU)TehranIran

Personalised recommendations