Advertisement

Environmental Chemistry Letters

, Volume 17, Issue 4, pp 1623–1643 | Cite as

Historical review on chitin and chitosan biopolymers

  • Grégorio CriniEmail author
Review

Abstract

In 1799, Hatchett decalcified shells of crabs, lobsters, prawns and crayfish with mineral acids, observing that they produced a moderate effervescence and in a short time were found to be soft and plastic of a yellowish color and like a cartilage, which retained the original figure. Although this is the first mention of calcified chitin in invertebrates, the discovery of chitin is usually attributed both to Braconnot in 1811 who discovered chitin from fungi, and to Odier in 1823 who obtained a hornlike material after treatment of cockchafer elytra with potassium hydroxide. Chitin was first named fongine by Braconnot and then chitine by Odier. Children revealed the nitrogenous nature of chitin in 1824. The history of chitosan, the main derivative of chitin, dates back to 1859 with the work of Rouget. The name of chitosan was, however, introduced in 1894 by Hoppe-Seyler. In 1876, Ledderhose hydrolyzed arthropod chitin and discovered glykosamin, the first derivative of chitin. This review describes the 220 years of the development of chitin. I have roughly divided the story into five periods: discovery from 1799 to 1894, a period of confusion and controversy from 1894 to 1930, exploration in 1930–1950, a period of doubt from 1950 to 1970, and finally the period of application from 1970. The different periods are illustrated by examples of published studies, in particular from outstanding scholars who have left their mark on the history of this polysaccharide. Although this historic review is not exhaustive, it highlights the work of researchers who have contributed to the development of our knowledge of chitin throughout the 220 years of its history.

Keywords

Chitin Chitosan History Discovery Braconnot Controversy Exploration Period of doubt Period of application 

Notes

Acknowledgements

It is first a honor and pleasure to thank my mentors, colleagues and friends Professor Benito Casu (1927–2016), Professor Kjell M. Vårum (1953–2016), Professor Michel Morcellet and Research Director Giangiacomo Torri for inspiring my interest in biopolymers in the mid-1990s, in particular chitin and chitosan polysaccharides. I thank the following colleagues for much of the information collected and critical reading of early drafts of this review: Nadia Morin-Crini, Sylvie Bastello-Duflot and Marlène Gruet (Université Bourgogne Franche-Comté, France), Peter Winterton (Université de Toulouse III, France), Giangiacomo Torri (Istituto di Chimica e Biochemica G. Ronzoni, Milan, Italy), and Giuseppe Trunfio (University of Messina, Italy).

References

  1. Ahmed S, Ikram S (eds) (2017) Chitosan—derivatives, composites and applications. Scrivener Publishing LLC., Wiley, Beverly, p 516. ISBN 978-1-119-36350-7Google Scholar
  2. Ahmed S, Annu Ali A, Sheikh J (2018) A review on chitosan centred scaffolds and their applications in tissue engineering. Int J Biol Macromol 116:849–862.  https://doi.org/10.1016/j.ijbiomac.2018.04.176 CrossRefGoogle Scholar
  3. Akbar A, Shakeel A (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286.  https://doi.org/10.1016/j.ijbiomac.2017.12.078 CrossRefGoogle Scholar
  4. Aljohani W, Ullah MW, Zhang XL, Yang G (2018) Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 107:261–275.  https://doi.org/10.1016/j.ijbiomac.2017.08.171 CrossRefGoogle Scholar
  5. Amber Jennings J, Bumgardner JD (eds) (2017) Chitosan based biomaterials. Fundamentals. Volume 1, vol 122. Woodhead publishing series in biomaterials. Elsevier, Amsterdam, p 342. ISBN 978-0-08-100230-8Google Scholar
  6. Araki T (1895) Ueber das chitosan. Z Physiol Chem 20:498–510Google Scholar
  7. Arnold LB (1939) Fibrous product. US Patent 2,142,986Google Scholar
  8. Attwood MM, Zola H (1967) The association between chitin and protein in some chitinous tissues. Comp Biochem Physiol 20:993–998.  https://doi.org/10.1016/0010-406X(67)90069-2 CrossRefGoogle Scholar
  9. Avcu E, Bastan FE, Abdullah HZ, Rehman MAU, Avcu YY, Boccaccini AR (2019) Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review. Prog Mater Sci 103:69–108.  https://doi.org/10.1016/j.pmatsci.2019.01.001 CrossRefGoogle Scholar
  10. Barbosa PFP, Cumba LR, Andrade RDA, do Carmo DR (2019) Chemical modifications of cyclodextrin and chitosan for biological and environmental applications: metals and organic pollutants adsorption and removal. J Polym Environ 27:1352–1366.  https://doi.org/10.1007/s10924-019-01434-x CrossRefGoogle Scholar
  11. Barker SA, Foster AB, Stacey M, Webber JM (1957) Isolation of a homologous series of oligosaccharides from chitin. Chem Ind 7:208–209Google Scholar
  12. Barker SA, Foster AB, Stacey M, Webber JM (1958) Properties of oligosaccharides obtained by controlled fragmentation of chitin. J Chem Soc.  https://doi.org/10.1039/jr9580002218 CrossRefGoogle Scholar
  13. Baumann E, Kossel A (1895a) Felix Hoppe-Seyler. Ber Dtsch Chem Ges 28:1147–1192.  https://doi.org/10.1002/cber.18950280499 CrossRefGoogle Scholar
  14. Baumann E, Kossel A (1895b) Zur erinnerung an Felix Hoppe-Seyler. Z Physiol Chem 21:I–LXI.  https://doi.org/10.1515/bchm2.1896.21.1.109 CrossRefGoogle Scholar
  15. Beer FJ (1977) Le professeur Paul Karrer et la liberté de la science. Société Française d’Histoire de la Médicine, séance du 23 avril 1977, pp 221–231Google Scholar
  16. Bell DJ (1949) Carbohydrate chemistry. Annu Rev Biochem 18:87–96Google Scholar
  17. BeMiller JN (1965) Chitin. In: Whistler RL (ed) Methods carbohydrate chemistry, vol V. Academic Press, New York, pp 103–105Google Scholar
  18. Berezina N (2016) Production and application of chitin. In: Luque R, Xu CP (eds) Biomaterials. Biological production of fuels and chemicals. De Gruyter, BerlinGoogle Scholar
  19. Bergmann M, Zervas L (1931) Synthesen mit glucosamin. Ber Dtsch Chem Ges 64B:975–980Google Scholar
  20. Bergmann M, Zervas L, Silberkweit E (1931a) Über die biose des chitins. Naturwissenschaften 19:20Google Scholar
  21. Bergmann M, Zervas L, Silberkweit E (1931b) Über glucosaminsäure und ihre desaminierung. Ber Dtsch Chem Ges 64:2428–2436.  https://doi.org/10.1002/cber.19310640917 CrossRefGoogle Scholar
  22. Bergmann M, Zervas L, Silberkweit E (1931c) Über chitin und chitobiose. Ber Dtsch Chem Ges 64:2436–2440.  https://doi.org/10.1002/cber.19310640918 CrossRefGoogle Scholar
  23. Bergmann M, Rinke H, Schleich H (1934) Über dipeptide von epimeren glucosaminsäuren und ihr verhalten gegen dipeptidase. Konfiguration des d-glucosamins. Z Physiol Chem 224:33–39Google Scholar
  24. Bernfeld P (1963) Biogenesis of natural compounds. Pergamon Press, Oxford, p 1224Google Scholar
  25. Bierry H, Gouzon B, Magnan C (1939) N-acétylglucosamine et sucre protéidique. C R Soc Biol 130:411–413Google Scholar
  26. Blackwell J (1969) Structure of β-chitin or parallel chain systems of poly-β-(1 → 4)-N-acetyl-d-glucosamine. Biopolymers 7:281–298Google Scholar
  27. Blackwell J, Parker KD, Rudall KM (1965) Chitin in pogonophore tubes. J Mar Biol Assoc UK 45:659–661Google Scholar
  28. Blackwell J, Parker KD, Rudall KM (1967) Chitin fibres of the diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J Mol Biol 28:383–385.  https://doi.org/10.1016/S0022-2836(67)80018-4 CrossRefGoogle Scholar
  29. Blackwell J, Gardner KH, Kolpak FJ, Minke R, Claffey WB (1980) Refinement of cellulose and chitin structures. In: French AD, Gardner KCH (eds) Fiber diffraction methods, vol 141. ACS symposium series. American Chemical Society, Washington DC, pp 315–334.  https://doi.org/10.1021/bk-1980-0141.ch019 CrossRefGoogle Scholar
  30. Blumberg R, Southall CL, Van Rensburg NJ, Volckman OB (1951) South African fish products. XXXII. The rock lobster: A study of chitin production from processing wastes. J Sci Food Agric 2:571–576.  https://doi.org/10.1002/jsfa.2740021210 CrossRefGoogle Scholar
  31. Blumenthal HJ, Roseman S (1957) Quantitative estimation of chitin in fungi. J Bacteriol 74:222–224Google Scholar
  32. Bonecco MB, Martínez Sáenz MG, Buffa LM (2017) Chitosan, from residue to industry. In: Masuell M, Renard D (eds) Advances in physicochemical properties of biopolymers. Bentham e-books. Bentham Science Publisher, Sharjah, pp 224–256. ISBN 978-1-68108-545-6Google Scholar
  33. Bouligand Y (1965) Sur une architecture torsadée répandue dans de nombreuses cuticles d’arthropodes. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences Paris, vol 261. Gauthier-Villars & Cie, éditeur-imprimeur-libraire, Paris, pp 3665–3668Google Scholar
  34. Bounoure L (1919) Généralités sur la chitine. In: Houssay F (ed) Aliments, chitine et tube digestif chez les coléoptères Collection de morphologie dynamique. Librairie Scientifique A. Hermann et Fils, Paris, p 294Google Scholar
  35. Brach H, von Fürth O (1912) The chemical constitution of chitin. Biochem Z 38:468–491Google Scholar
  36. Braconnot H (1811a) Sur la nature des champignons. In: Klostermann J (ed) Recueil de Mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie, vol Soixante-dix-neuf. Annales de Chimie. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées, Paris, pp 265–304Google Scholar
  37. Braconnot H (1811b) Des recherches analytiques sur la nature des champignons. In: Klostermann J (ed) Recueil de Mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie, vol Soixante-dix-neuf. Annales de Chimie. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées, Paris, pp 272–292Google Scholar
  38. Braconnot H (1811c) De la fongine, ou analyse des champignons. Journal de Physique, de Chimie, d’Histoire Naturelle et des Arts, vol LXXIII. Courcier, Imprimeur-Libraire pour les Mathématiques, Paris, pp 130–135Google Scholar
  39. Braconnot H (1813) Nouvelles recherches analytiques sur la nature des champignons, pour servir de suite à celles qui ont été insérés dans les tomes LXXIX et LXXX des Annales de chimie. Annales de Chimie. In: Klostermann J (ed) Recueil de Mémoires concernant la chimie et les arts qui en dépendent et spécialement la pharmacie, vol Soixante-dix-neuf. Annales de chimie. Librairie des Ecoles Impériales Polytechnique et des Ponts et Chaussées, Paris, pp 237–270Google Scholar
  40. Breuer R (1898) Ueber das freie chitosamin. Ber Dtsch Chem Ges 31:2193–2200Google Scholar
  41. Brimacombe JS, Webber JM (1964) Mucopolysaccharides: chemical structure, distribution and isolation, vol 6. BBA Library, Elsevier, Amsterdam, p 181Google Scholar
  42. Brock N (1957) Infrared spectra of carbohydrates. Adv Carbohydr Chem 12:13–33.  https://doi.org/10.1016/S0096-5332(08)60203-9 CrossRefGoogle Scholar
  43. Broussignac P (1968) Haut polymère naturel connu dans l’industrie: le chitosane. Chimie et Industrie Génie Chimique 99:1241–1247Google Scholar
  44. Bunge G (1912) The glucosides. In: Aders Plimmer RH (trans) Text-book of organic chemistry for medical students. Cornell University Library. Longmans, Green and Co. Lecture IX, pp 122–130Google Scholar
  45. Carlström D (1957) The crystal structure of α-chitin (poly-N-acetyl-d-glucosamine). J Biophys Biochem Cytol 3:669–683Google Scholar
  46. Carlström D (1962) The polysaccharide chain of chitin. Biochim Biophys Acta 59:361–364.  https://doi.org/10.1016/0006-3002(62)90185-3 CrossRefGoogle Scholar
  47. Children JG (1824) Memoir on the chemical composition of the corneous parts of insects; by Augustus Odier. Translated from the original French, with some additional remarks and experiments. Bell T, Children JG, Sowerby JDC, Sowerby GB (eds), London. March, 1824, no I, article XV. Zool J 1:101–115Google Scholar
  48. Clark GL (1934) The macromolecule and the micelle as structural units in biological materials with special reference to cellulose. Cold Spring Harb Symp Quant Biol 2:28–38Google Scholar
  49. Clark GL, Smith AF (1936) X-ray diffraction studies of chitin, chitosan, and derivatives. J Phys Chem 40:863–879.  https://doi.org/10.1021/j150376a001 CrossRefGoogle Scholar
  50. Conrad J (1966) Chitin. Encyclopedia of polymer science and technology, vol 3. Interscience, New York, pp 695–705Google Scholar
  51. Cox EG, Jeffrey GA (1939) Crystal structure of glucosamine hydrobromide. Nature 143:894–895Google Scholar
  52. Crini G (2019) Historical landmarks in the discovery of chitin. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—history, fundamentals & innovations, vol 35. Sustainable agriculture reviews. Springer, Cham.  https://doi.org/10.1007/978-3-030-16538-3_1 CrossRefGoogle Scholar
  53. Crini G, Lichtfouse É (eds) (2019a) Chitin and chitosan—history, fundamentals & innovations, vol 35. Sustainable agriculture reviews. Springer, Cham. ISBN 978-3-030-16537-6Google Scholar
  54. Crini G, Lichtfouse É (eds) (2019b) Chitin and chitosan—applications in food, agriculture, pharmacy, medicine and wastewater treatment, vol 35. Sustainable agriculture reviews. Springer, Cham. ISBN 978-3-030-16580-2Google Scholar
  55. Crini G, Badot PM, Guibal E (eds) (2009) Chitine et chitosane—du biopolymère à l’application. PUFC, Besançon, p 303Google Scholar
  56. Dahn H, Cherbuliez E, Chekhitliez E (1969) Professor Dr. Paul Karrer zum 80. Geburtstag. Helv Chim Acta 52:568A–568C.  https://doi.org/10.1002/hlca.19690520302 CrossRefGoogle Scholar
  57. Darmon SE, Rudall KM (1950) Infra-red and X-ray studies of chitin. Discussions Faraday Soc 9:251–260.  https://doi.org/10.1039/DF9500900251 CrossRefGoogle Scholar
  58. Davis SP (2011) In: Davis SP (ed) Chitosan: Manufacture, properties, and usage. Biotechnology in agriculture, industry and medicine. Nova Science Publishers Inc, New York, p 507. ISBN 9781617288319Google Scholar
  59. de Bary A (1887) Comparative morphology and biology of the fungi, mycetozoa, and bacteria. The Clarendon Press London, Oxford, p 525Google Scholar
  60. de Farias BS, Cadaval TRS, Pinto LAD (2019) Chitosan-functionalized nanofibers: a comprehensive review on challenge’s and prospects for food applications. Int J Biol Macromol 123:210–220.  https://doi.org/10.1016/j.ijbiomac.2018.11.042 CrossRefGoogle Scholar
  61. Dima JB, Sequeiros C, Zaritzky N (2017) Chitosan from marine crustaceans: production, characterization and applications. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, pp 39–56.  https://doi.org/10.5772/65258 CrossRefGoogle Scholar
  62. Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B (2018) Sulfonated and sulfated chitosan for biomedical applications: a review. Carbohydr Polym 202:382–396.  https://doi.org/10.1016/j.carbpol.2018.09.011 CrossRefGoogle Scholar
  63. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1:246–253.  https://doi.org/10.1016/S1461-5347(98)00059-5 CrossRefGoogle Scholar
  64. Dumitriu S (ed) (2005) Polysaccharides—structural diversity and functional versatility, 2nd edn. Marcel Dekker, New York, p 1204. ISBN 00-8247-5480-8Google Scholar
  65. Dutta PK (2016) Chitin and chitosan for regenerative medicine. Springer, New Delhi, p 389. ISBN 9788132234647Google Scholar
  66. Dweltz NE (1960) The structure of chitin. Biochim Biophys Acta 44:416–435.  https://doi.org/10.1016/0006-3002(60)91597-3 CrossRefGoogle Scholar
  67. Dweltz NE (1961) The structure of β-chitin. Biochim Biophys Acta 51:283–294.  https://doi.org/10.1016/0006-3002(61)90169-X CrossRefGoogle Scholar
  68. Dweltz NE, Anand N (1961) Nature of the amino sugar in β-chitin. Biochim Biophys Acta 50:357.  https://doi.org/10.1016/0006-3002(61)90335-3 CrossRefGoogle Scholar
  69. Eugster CH (1972) Das Portrait: Paul Karrer 1889–1971. Chem Unserer Zeit 6:147–153.  https://doi.org/10.1002/ciuz.19720060503 CrossRefGoogle Scholar
  70. Farr WK, Sisson WA (1934) X-ray diffraction patterns of cellulose particles and interpretations of cellulose diffraction data. Contrib Boyce Thompson Inst 6:315–321Google Scholar
  71. Feofilova EP (1984) Biological functions and the practical use of chitin. Prikl Biokhim Mikrobiol 20:147–160Google Scholar
  72. Ferguson AN, O’Neill AG (2011) In: Ferguson AN, O’Neill AG (eds) Focus on chitosan research. Nova Science Publishers, Hauppauge, p 477Google Scholar
  73. Fikentscher H (1932) Systematik der cellulose auf grund ihrer viskositat in losung. Cellulosechemie 13:58–64Google Scholar
  74. Finney NS, Siegel JS (2008) In memoriam—Albert Hofmann (1906–2008). Chimia 62:444–447.  https://doi.org/10.2533/chimia.2008.444 CrossRefGoogle Scholar
  75. Fischer E (1884) Verbindungen des phenylhydrazins mit den zuckerarten. Ber Dtsch Chem Ges 17:579–584.  https://doi.org/10.1002/cber.188401701158 CrossRefGoogle Scholar
  76. Fischer E (1912) Syntheses in the purine and sugar group. Nobel lecture, December 12, 1902, p 15Google Scholar
  77. Fischer E, Andreae E (1903) Über chitonsäure und chitarsäure. Ber Dtsch Chem Ges 36:2587–2592Google Scholar
  78. Fischer E, Leuchs H (1902) Synthese des serins, der l-glucosaminsäure und anderer oxyaminosäuren. Ber Dtsch Chem Ges 35:3787–3805Google Scholar
  79. Fischer E, Leuchs H (1903) Synthese das d-glucosamins. Ber Dtsch Chem Ges 36:24–29Google Scholar
  80. Foster AB, Hackman RH (1957) Application of ethylenediaminetetra-acetic acid in the isolation of crustacean chitin. Nature 180:40–41Google Scholar
  81. Foster AB, Stacey M (1958) The aminosugars and chitin. In: Ruhland W (ed) Encyclopedia of plant physiology. Formation–storage–mobilization and transformation of carbohydrates, vol 6. Book series 532. Springer, Berlin, pp 518–529.  https://doi.org/10.1007/978-3-642-94731-5_21 CrossRefGoogle Scholar
  82. Foster AB, Webber JM (1961) Chitin. Adv Carbohydr Chem 15:371–393.  https://doi.org/10.1016/S0096-5332(08)60192-7 CrossRefGoogle Scholar
  83. Fraenkel S, Kelly (1903) Sur la constitution de la chitine. Bulletin de la Société Chimique de Paris, vol XXX. Troisième série. Masson et Cie, éditeurs. Libraires de l’Académie de Médecine, Paris, p 372Google Scholar
  84. Fränkel S (1898) Über die reindarstellung der sogenannten kohlehydrat-gruppe des eiweisses. Monatsh Chem Verw Teile Anderer Wiss 19:747–769.  https://doi.org/10.1007/BF01517443 CrossRefGoogle Scholar
  85. Fränkel S, Jellinek C (1927) Limulus Polyphemus. Biochem Z 185:384–388Google Scholar
  86. Fränkel S, Kelly A (1901a) Beiträge zur constitution des chitins. Das vorkommen von chitin und seine verwertung als systematisch- phylogenetisches merkmal im pflanzenreich. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Mathematisch Naturwissenchaftliche Klasse Abt IIB, vol 110. Gerold, Wien, pp 1147–1156Google Scholar
  87. Fränkel S, Kelly A (1901b) Beiträge zur constitution des chitins. Monatsh Chem Verw Teile Anderer Wiss 23:123–132.  https://doi.org/10.1007/BF01525858 CrossRefGoogle Scholar
  88. Frémy E (1855) Recherches chimiques sur les os. Ann Chim Phys 3ème Série XLIII:93–96Google Scholar
  89. Freudenberg K (1967) Emil Fischer and his contribution to carbohydrate chemistry. Adv Carbohydr Chem 21:1–38.  https://doi.org/10.1016/S0096-5332(08)60314-8 CrossRefGoogle Scholar
  90. Freudenberg K, Eichel H (1935) Über spezifische kohlenhydrate der blutgruppen. II. Liebigs Ann 518:97–102.  https://doi.org/10.1002/jlac.19355180106 CrossRefGoogle Scholar
  91. Frey R (1950) Chitin und zellulose in Pilzzell-wänden. Ber Schweizerischen Botanischen Ges 60:199–230Google Scholar
  92. Friedman S (1970) Metabolism of carbohydrates in insects. In: Florkin M, Scheer BT (eds) Chemical zoology, vol 5. Academic Press, New YorkGoogle Scholar
  93. Fruton JS (1990) Felix Hoppe-Seyler and Willy Kühne. Contrasts in scientific style research groups in the chemical and biochemical sciences, vol 191. Memoirs of the American Philosophical Society, Philadelphia, pp 72–117; 308–321. ISBN 0-87169-191-4Google Scholar
  94. Gallo M, Naviglio D, Caruso AA, Ferrara L (2016) Applications of chitosan as a functional food. Novel approaches of nanotechnology in food, vol 1. Academic Press, New York, pp 425–464.  https://doi.org/10.1016/b978-0-12-804308-0.00013-3 CrossRefGoogle Scholar
  95. Gardner KH, Blackwell J (1975) Refinement of the structure of β-chitin. Biopolymers 14:1581–1595.  https://doi.org/10.1002/bip.1975.360140804 CrossRefGoogle Scholar
  96. Giles CH, Hassan ASA, Laidlaw M, Subramanian RVR (1958) Adsorption at organic surfaces. III. Some observations on the constitution of chitin and on its adsorption of inorganic and organic acids from aqueous solution. J Soc Dyers Colourists 74:647–654Google Scholar
  97. Gilson E (1893) La cristallisation de la cellulose et la composition chimique de la membrane végétale. La Cellule 9:397–441Google Scholar
  98. Gilson E (1894a) Recherches chimiques sur la membrane cellulaire des champignons. Bull Soc Chim France 3:1099–1102Google Scholar
  99. Gilson E (1894b) Recherches chimiques sur la membrane cellulaire des champignons. La Cellule XI(1):7Google Scholar
  100. Gilson E (1894c) Note sur le corps azote de la membrane cellulaire des champignons. Bull Soc Chim Paris 1894(23):590Google Scholar
  101. Gilson E (1895) Das chitin und die membranen der pilzzellen. Ber Dtsch Chem Ges 28:821–822.  https://doi.org/10.1002/cber.189502801185 CrossRefGoogle Scholar
  102. Gonell HW (1926) Röentenographische studien an chitin. Hoppe-Seylers Z Physiol Chem 152:18–30.  https://doi.org/10.1515/bchm2.1926.152.1-3.18 CrossRefGoogle Scholar
  103. Good JM, Gregory O, Bosworth N (1813) Pantologia: a new cyclopaedia, vol 3. Kearsley, LondonGoogle Scholar
  104. Goosen MFA (ed) (1997) Applications of chitin and chitosan. CRC Press LLC., Boca Raton, p 336Google Scholar
  105. Gréhant N (1904a) Charles Rouget, notice nécrologique. Nouv Arch Mus Hist Nat Sixième:I–VGoogle Scholar
  106. Gréhant N (1904b) Liste des ouvrages et mémoires publiés par Ch. Rouget. Nouv Arch Mus Hist Nat Sixième:VI–XIIGoogle Scholar
  107. Griffiths AB (1892a) La pupine, nouvelle substance animale. C R Acad Sci 115:320–321Google Scholar
  108. Griffiths AB (1892b) La pupine, nouvelle substance animale. Bull Acad R Belg 24:592Google Scholar
  109. Hackman RH (1953a) Chemistry of insect cuticle. 1. The water-soluble proteins. Biochem J 54:362–367Google Scholar
  110. Hackman RH (1953b) Chemistry of insect cuticle. 3. Hardening and darkening of the cuticle. Biochem J 54:371–377Google Scholar
  111. Hackman RH (1954) Studies on chitin. I. Enzymatic degradation of chitin and chitin esters. Austral J Biol Sci 7:168–178Google Scholar
  112. Hackman RH (1959) Biochemistry of the insect cuticle. In: Levenbook L (ed) Proceedings of the 4th international congress biochemistry held in Vienna, September 1–6, 1958, Pergamon Press, vol 12, pp 48–62Google Scholar
  113. Hackman RH (1960) Studies on chitin. IV. The occurrence of complexes in which chitin and protein are covalently linked. Austral J Biol Sci 13:568–577Google Scholar
  114. Hackman RH (1962) Studies on chitin. V. The action of mineral acids on chitin. Austral J Biol Sci 15:526–537Google Scholar
  115. Hagenbach D, Werthmüller L, Grof S (2013) Mystic chemist: the life of Albert Hofmann and his discovery of LSD (first English edition). Synergetic Press, Santa Fe, p 16. ISBN 978-0-907791-46-1Google Scholar
  116. Hamlin ML (1911) A tetra-acetyl aminoglucoside. J Am Chem Soc 33:766–769.  https://doi.org/10.1021/ja02218a016 CrossRefGoogle Scholar
  117. Han JW, Ruiz-Garcia L, Qian JP, Yang XT (2018) Food packaging: a comprehensive review and future trends. Compr Rev Food Sci Food Saf 17:860–877.  https://doi.org/10.1111/1541-4337.12343 CrossRefGoogle Scholar
  118. Hatchett C (1799) Experiments and observations on shell and bone. In: Bowyer W, Nichols J (eds) Philos Trans R Soc Lond. Royal Society, London, June 13, 1799, vol 89, no XVIII, pp 315–334Google Scholar
  119. Hatchett C (1800) Experiments and obfervations on shell and bone. In: Nicholson W (ed) J Nat Philos Chem Arts. London, February 1800, vol III, no VI, pp 500–506Google Scholar
  120. Haworth WN (1946) The structure, function and synthesis of polysaccharides. Proc R Soc Lond Ser A 186:1–19Google Scholar
  121. Haworth WN, Lake WHG, Peat S (1939) The configuration of glucosamine (chitosamine). J Chem Soc.  https://doi.org/10.1039/JR9390000271 CrossRefGoogle Scholar
  122. Heckert WW (1937) Textile. US Patent 2,099,363Google Scholar
  123. Helferich B (1969) Max Bergmann 1886–1944. Chem Ber 102:I–XXVI.  https://doi.org/10.1002/cber.19691020147 CrossRefGoogle Scholar
  124. Herzog RO (1924) Über den feinbau der faserstoffe. Naturwissenschaften 12:955–960.  https://doi.org/10.1007/BF01507215 CrossRefGoogle Scholar
  125. Heyn ANJ (1936a) X ray investigations on the molecular structure of chitin in cell walls (preliminary note). Proc Kon Akad Wetensch Amsterdam 39:132–135Google Scholar
  126. Heyn ANJ (1936b) Molecular structure of chitin in plant cell-walls. Nature 137:277–278.  https://doi.org/10.1038/137277d0 CrossRefGoogle Scholar
  127. Hirano S (1989) Production and application of chitin and chitosan in Japan. In: Skjåk-Braek G, Anthonsen T, Sandford PA (eds) Chitin and chitosan. Sources, chemistry, biochemistry, physical properties and applications. Proceedings from the 4th international conference on chitin and chitosan held in Trondheim, Norway, August 22–24, 1988, Elsevier Applied Science, New York, pp 37–43Google Scholar
  128. Hofmann A (1929) Über den enzymatischen abbau des chitins und chitosans. Dissertation, Universität Zürich, p 50Google Scholar
  129. Honke L, Scheer BT (1970) Carbohydrate metabolism in Crustacea. In: Florkin M, Scheer B (eds) Chemical zoology, vol 5. Academic Press, New YorkGoogle Scholar
  130. Hoppe-Seyler F (1894) Ueber chitin und cellulose. Ber Dtsch Chem Ges 27:3329–3331.  https://doi.org/10.1002/cber.189402703135 CrossRefGoogle Scholar
  131. Hoppe-Seyler F (1895) Ueber umwandlungen des chitins. Ber Dtsch Chem Ges 28:82.  https://doi.org/10.1002/cber.18950280124 CrossRefGoogle Scholar
  132. Horowitz ST, Roseman S, Blumenthal HJ (1957) The preparation of glucosamine oligosaccharides. 1. Separation. J Am Chem Soc 79:5046–5049.  https://doi.org/10.1021/ja01575a059 CrossRefGoogle Scholar
  133. Hu ZY, Ganzle MG (2019) Challenges and opportunities related to the use of chitosan as a food preservative. J Polym Microbiol 126:1318–1331.  https://doi.org/10.1111/jam.14131 CrossRefGoogle Scholar
  134. Ilkewitsch K (1908) Fungal chitin named mycetin. Bulletin de l’Académie Impériale des Sciences de St. Pétersbourg, pp 571–588Google Scholar
  135. Irvine JC (1909) A polarimetric method of identifying chitin. J Chem Soc 95:564–570.  https://doi.org/10.1039/ct9099500564 CrossRefGoogle Scholar
  136. Irvine JC, Hynd A (1912) The conversion of d-glucosamine into d-glucose. J Chem Soc 101:1128–1146Google Scholar
  137. Irvine JC, Hynd A (1914) The conversion of d-glucosamine into d-mannose. J Chem Soc 105:698–710Google Scholar
  138. Irvine JC, McNicoll D, Hynd A (1911) New derivatives of d-glucosamine. J Chem Soc 99:250–261Google Scholar
  139. Jayakumar R, Prabaharan M, Muzzarelli RAA (2011) In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Chitosan for biomaterials I. Springer, Heidelberg, p 236. ISBN 978-3-642-23113-1Google Scholar
  140. Jeanloz R (1950) Structure de la chitine et de l’acide hyaluronique et oxydation des sucres aminés par l’ion périodate. Experentia 6:52–53.  https://doi.org/10.1007/BF02174813 CrossRefGoogle Scholar
  141. Jeanloz RW (1956) Kurt Heinrich Meyer: 1883–1952. Adv Carbohydr Chem 11:XIII–XVIII.  https://doi.org/10.1016/s0096-5332(08)60114-9 CrossRefGoogle Scholar
  142. Jeanloz R, Forchielli E (1950) Recherches sur l’acide hyaluronique et les substances apparentées III. La détermination de la structure de la chitine par oxydation avec l’ion periodate. Helv Chim Acta 33:1690–1697Google Scholar
  143. Jeanloz R, Forchielli E (1951) Studies on hyaluronic acid and related substances. 2. Periodate oxidation of glucosamine and derivatives. J Biol Chem 188:361–369Google Scholar
  144. Jeuniaux Ch (1963) Chitine et chitinolyse, un chapitre de la biologie moléculaire. Masson, ParisGoogle Scholar
  145. Jeuniaux Ch (1971) Chitinous structures. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 26C. Elsevier, Amsterdam, pp 595–632Google Scholar
  146. Johnson WB (1803) History of the progress and present state of animal chemistry. New York Public Library. Printed for Johnson J, St Paul’s Churchyard, vol 1, p 411Google Scholar
  147. Kalantari K, Afifi AM, Jahangirian H, Webster TJ (2019) Biomedical applications of chitosan electrospun nanofibers as a green polymer—review. Carbohydr Polym 207:588–600.  https://doi.org/10.1016/j.carbpol.2018.12.011 CrossRefGoogle Scholar
  148. Karrer P (1930) Der enzymatische abbau von nativer und umgefällter zellulose, von kunstseiden und von chitin. Kolloid Z 52:304–319.  https://doi.org/10.1007/BF01473951 CrossRefGoogle Scholar
  149. Karrer P, Hofmann A (1929) Polysaccharide XXXIX. Über den enzymatischen abbau von chitin und chitosan I. Helv Chim Acta 12:616–637.  https://doi.org/10.1002/hlca.19290120167 CrossRefGoogle Scholar
  150. Karrer P, Smirnoff AP (1922) Polysaccharide XVII. Beitrag zur kenntnis des chitins. Helv Chim Acta 5:832–852.  https://doi.org/10.1002/hlca.19220050604 CrossRefGoogle Scholar
  151. Karrer P, von François G (1929) Polysaccharide XXXX. Über den enzymatischen abbau von chitin II. Helv Chim Acta 12:986–988.  https://doi.org/10.1002/hlca.192901201104 CrossRefGoogle Scholar
  152. Karrer P, White SM (1930) Polysaccharide XLIV. Weitere beiträge zur kenntnis des chitins. Helv Chim Acta 13:1105–1113.  https://doi.org/10.1002/hlca.19300130536 CrossRefGoogle Scholar
  153. Karrer P, Schnider O, Smirnoff AP (1924) Polysaccharide XXIX. Zur kenntnis des chitins II und konfiguration des glucosamins. Helv Chim Acta 7:1039–1045Google Scholar
  154. Karrer P, Koenig H, Usteri E (1943) Zur kenntnis blutgerinnungshemmender polysaccharid-poly-schwefelsäure-ester und ähnilicher verbindungen. Helv Chim Acta 26:1296–1315.  https://doi.org/10.1002/hlca.19430260504 CrossRefGoogle Scholar
  155. Katsoyannis PG (1973) The scientific work of Leonidas Zervas. In: Katsoyannis PG (ed) The chemistry of polypeptides. Springer, Boston, pp 1–20.  https://doi.org/10.1007/978-1-4613-4571-8_1 CrossRefGoogle Scholar
  156. Kent PW (1964) Chitin and mucosubstances. In: Florkin M, Mason HS (eds) Comparative biochemistry. A comprehensive treatise, vol VII. Academic Press, New York, pp 93–136.  https://doi.org/10.1016/b978-0-12-395548-7.50009-x CrossRefGoogle Scholar
  157. Kent PW, Whitehouse MW (1955) Biochemistry of the amino-sugars. Butterworths Scientific Publications, London, p 311pGoogle Scholar
  158. Khor E (ed) (2001) Chitin: fulfilling a biomaterials promise, 1st edn. Elsevier, Amsterdam, p 148.  https://doi.org/10.1016/b978-008044018-7/50001-4 CrossRefGoogle Scholar
  159. Khouvine Y (1932) Étude aux rayons X de la chitine d’Aspergillus niger, de Psalliota campestris et d’Armillaria mellea. C R Séances Hebd Acad Sci 195:396–397Google Scholar
  160. Kim SK (ed) (2011) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Taylor & Francis Group LLC, Boca Raton, p 666. ISBN 9781439816042Google Scholar
  161. Kim SK (ed) (2014) Chitin and chitosan derivatives—advances in drug discovery and developments. CRC Press Taylor & Francis Group LLC., Boca Raton, p 511. ISBN 978-1-4665-6628-6Google Scholar
  162. Krajewska B (1991) Chitin and its derivatives as supports for immobilization of enzymes. Acta Biotechnol 11:269–277.  https://doi.org/10.1002/abio.370110319 CrossRefGoogle Scholar
  163. Kravanja G, Primozic M, Knez Z, Leitgeb M (2019) Chitosan-based (nano)materials for novel biomedical applications. Molecules.  https://doi.org/10.3390/molecules24101960 CrossRefGoogle Scholar
  164. Kreger DR (1954) Observations on cell walls of yeats and some other fungi by X-ray diffraction and solubility tests. Biochim Biophys Acta 13:1–9Google Scholar
  165. Larson LL (1939) Manufacture of paper. US Patent 2,184,307Google Scholar
  166. Larson LL (1940) Manufacture of paper. US Patent 2,216,845Google Scholar
  167. Lassaigne JL (1843) Mémoire sur un procédé simple pour constater la présence d’azote dans des quantités minimes de matière organique. C R Séances Hebd Acad Sci 16:387–391Google Scholar
  168. Latreille PA (1831) Cours d’entomologie ou l’histoire naturelle des crustacés, des arachnides, des myriapodes et des insectes. Imprimerie de Crapelet, Paris, p 669Google Scholar
  169. Leboucq H (1913) E. Gilson (1890). Notices biographiques, vol II. Université de Gand. Maison d’édition I. Vanderpoorten, Ghent, pp 575–577Google Scholar
  170. Ledderhose G (1876) Ueber salzsaures glycosamin. Ber Dtsch Chem Ges 9:1200–1201.  https://doi.org/10.1002/cber.18760090251 CrossRefGoogle Scholar
  171. Ledderhose G (1878) Ueber chitin und seine spaltungsprodukte. Z Physiol Chem 2:213–227Google Scholar
  172. Ledderhose G (1880a) Ueber Glykosamin. Dissertation der medicinischen Facultät der Kaiser Wilhelms, Universität Strassburg zur Erlangung der Doctorwürde, p 24Google Scholar
  173. Ledderhose G (1880b) Ueber glykosamin. Z Physiol Chem 4:139–159Google Scholar
  174. Liaqat F, Eltem R (2018) Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym 184:243–259.  https://doi.org/10.1016/j.carbpol.2017.12.067 CrossRefGoogle Scholar
  175. Lichtenthaler FW (2002) Emil Fischer, his personality, his achievements, and his scientific progeny. Eur J Org Chem 2002:4095–4122Google Scholar
  176. Lotmar W, Picken LER (1950) A new crystallographic modification of chitin and its distribution. Experientia 6:58–59Google Scholar
  177. Löwy E (1909) Über kristallinisches chitosansulfat. Biochem Z 23:47–60Google Scholar
  178. Lubs HA (1937) Paper. US Patent 2,085,163Google Scholar
  179. Malerba M, Cerana R (2019) Recent applications of chitin- and chitosan-based polymers in plants. Polymers.  https://doi.org/10.3390/polym11050839 CrossRefGoogle Scholar
  180. Marasco M (1938) Antistatic photographic film. US Patent 2,139,689Google Scholar
  181. Marasco M (1939) Photographic film. US Patent 2,182,814Google Scholar
  182. Marchessault RH, Sarko A (1967) X-ray structure of polysaccharides. Adv Carbohydr Chem 22:421–482.  https://doi.org/10.1016/S0096-5332(08)60156-3 CrossRefGoogle Scholar
  183. Mark H (1943) The investigation of high polymers with X-rays. Chemistry of large molecules. Interscience, New York, pp 33–71Google Scholar
  184. Mark H (1952) In memoriam—Professor K. H. Meyer. J Polym Sci 9:193–195.  https://doi.org/10.1002/pol.1952.120090301 CrossRefGoogle Scholar
  185. Maxwell RW (1939) Adhesive. US Patent 2,182,524Google Scholar
  186. Meyer KH (1942) Chitin. Natural and synthetic high polymers. Part F: substances related to or associated with cellulose, 1st edn. Interscience Publishers Inc, New York, pp 381–386Google Scholar
  187. Meyer KH (1950) Chitin and other polysaccharides containing amino sugars. Natural and synthetic high polymers, 2nd edn. Interscience Publishers Inc, New York, pp 448–455Google Scholar
  188. Meyer KH, Mark H (1928) Über den aufbau des chitins. Ber Dtsch Chem Ges 61:1936–1939.  https://doi.org/10.1002/cber.19280610862 CrossRefGoogle Scholar
  189. Meyer KH, Pankow GW (1935) Sur la constitution et la structure de la chitine. Helv Chim Acta 18:589–598.  https://doi.org/10.1002/hlca.19350180177 CrossRefGoogle Scholar
  190. Meyer KH, Wehrli H (1937) Comparaison chimique de la chitine et de la cellulose. Helv Chim Acta 20:353–362.  https://doi.org/10.1002/hlca.19370200156 CrossRefGoogle Scholar
  191. Minke R, Blackwell J (1978) The structure of α-chitin. J Mol Biol 120:167–181Google Scholar
  192. Molnar A (2019) The use of chitosan-based metal catalysts in organic transformations. Coord Chem Lett 388:126–171.  https://doi.org/10.1016/j.ccr.2019.02.018 CrossRefGoogle Scholar
  193. Morin-Crini N, Lichtfouse É, Torri G, Crini G (2019) Fundamentals and applications of chitosan. In: Crini G, Lichtfouse É (eds) Chitin and chitosan—history, fundamentals & innovations, vol 35. Sustainable agriculture reviews. Springer, Cham.  https://doi.org/10.1007/978-3-030-16538-3_2 CrossRefGoogle Scholar
  194. Muzzarelli RAA (1973) Natural chelating polymers. Alginic acid, chitin and chitosan. Pergamon Press, OxfordGoogle Scholar
  195. Muzzarelli RAA (1977) Chitin. Pergamon Press Ltd., Oxford. ISBN: 9780080203676Google Scholar
  196. Nechita P (2017) Applications of chitosan in wastewater treatment. In: Shalaby EA (ed) Biological activities and application of marine polysaccharides. InTech, Croatia, Rijeka, pp 209–228.  https://doi.org/10.5772/65289 CrossRefGoogle Scholar
  197. Neuberger A, Pitt Rivers R (1939) Preparation and configurative relationships of methylglucosaminides. J Chem Soc.  https://doi.org/10.1039/jr9390000122 CrossRefGoogle Scholar
  198. Neville AC (1967) Chitin orientation in cuticle and its control. Adv Insect Physiol 4:213–286.  https://doi.org/10.1016/S0065-2806(08)60209-X CrossRefGoogle Scholar
  199. Neville AC (1970) Cuticle ultrastructure in relation to the whole insect. In: Neville AC (ed) Insect ultrastructure. Blackwell, Oxford, pp 17–39Google Scholar
  200. Neville AC (1975) Biology of the arthropod cuticle. Springer, Berlin, p 448. ISBN 978-3-642-80912-5Google Scholar
  201. Neville AC, Luke BM (1969a) Molecular architecture of adult locust cuticle at the electron microscope level. Tissue Cell 1:355–363Google Scholar
  202. Neville AC, Luke BM (1969b) A two-system model for chitin–protein complexes in insect cuticles. Tissue Cell 1:689–707.  https://doi.org/10.1016/S0040-8166(69)80041-8 CrossRefGoogle Scholar
  203. Neville AC, Parry DAD, Woodhead-Galloway J (1976) The chitin crystallite in arthropod cuticle. J Cell Sci 21:73–82Google Scholar
  204. Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843.  https://doi.org/10.1021/acs.chemrev.6b00275 CrossRefGoogle Scholar
  205. Noyer-Weidner M, Schaffner W (1995) Felix Hoppe-Seyler (1825–1895). A pioneer of biochemistry and molecular biology. Biol Chem Hoppe-Seyler 376:447–448Google Scholar
  206. Odier A (1823) Mémoire sur la composition chimique des parties cornées des insectes. Mémoires de la Société d’Histoire Naturelle de Paris, vol Premier. Baudouin Frères Libraires-Éditeurs, Paris, pp 29–42Google Scholar
  207. Orr SFD (1954) Infra-red spectroscopic studies of some polysaccharides. Biochim Biophys Acta 14:173–181Google Scholar
  208. Packard AS (1886) On the nature and origin of the so-called spiral thread of tracheae. Am Nat 20:438–442Google Scholar
  209. Packard AS (1898) A textbook of entomology. MacMillan, New-York, p 729Google Scholar
  210. Pakdel PR, Peighambardoust SJ (2018) Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym 201:264–279.  https://doi.org/10.1016/j.carbpol.2018.08.070 CrossRefGoogle Scholar
  211. Payen A (1843) Propriétés distinctives entre les membranes végétales et les enveloppes des insectes et des crustacés. C R Séances Acad Sci 17:227–231Google Scholar
  212. Pearson FG, Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides. V. Chitin. J Polym Sci 43:101–116.  https://doi.org/10.1002/pol.1960.1204314109 CrossRefGoogle Scholar
  213. Pellá MCG, Lima-Tenorio MK, Tenorio-Neto ET, Guilherme MR, Muniz EC, Rubira AF (2018) Chitosan-based hydrogels: from preparation to biomedical applications. Carbohydr Polym 196:233–245.  https://doi.org/10.1016/j.carbpol.2018.05.033 CrossRefGoogle Scholar
  214. Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181:1314–1337.  https://doi.org/10.1007/s12010-0162286-2 CrossRefGoogle Scholar
  215. Picken LER (1940) The fine structure of biological systems. Biol Rev 15:133–167.  https://doi.org/10.1111/j.1469-185X.1940.tb00752.x CrossRefGoogle Scholar
  216. Picken LER (1960) The organization of cells. Clarendon Press, Oxford University, London, p 629Google Scholar
  217. Plisko EA, Baranova VN, Nud’ga LA (1974) Electrical insulating paper. USSR Patent 428.053Google Scholar
  218. Purchase ER, Braun CE (1946) d-glucosamine hydrochloride. Org Synth 26:36–37Google Scholar
  219. Rajoka MSR, Zhao LQ, Mehwish HM, Wu YG, Mahmood S (2019) Chitosan and its derivatives: synthesis, biotechnological applications, and future challenges. Appl Microbiol Biotechnol 103:1557–1571.  https://doi.org/10.1007/s00253-018-9550-z CrossRefGoogle Scholar
  220. Ramachandran GN, Ramakrishnan C (1962) The structure of chitin. Biochim Biophys Acta 63:307–309.  https://doi.org/10.1016/0006-3002(62)90684-4 CrossRefGoogle Scholar
  221. Ramakrishnan C, Prasad N (1972) Rigid-body refinement and conformation of α-chitin. Biochim Biophys Acta 261:123–135.  https://doi.org/10.1016/0304-4165(72)90321-2 CrossRefGoogle Scholar
  222. Reese ET (1963) Advances in enzymic hydrolysis of cellulose and related materials. Pergamon Press, Oxford, p 302.  https://doi.org/10.1016/c2013-0-01718-5 CrossRefGoogle Scholar
  223. Richards AG (1947a) The organization of arthropod cuticle. A modified interpretation. Science 105:170–171.  https://doi.org/10.1126/science.105.2720.170 CrossRefGoogle Scholar
  224. Richards AG (1947b) Studies on arthropod cuticle. 1. The distribution of chitin in lepidopterous scales, and its bearing on the interpretation of arthropod cuticle. Ann Entomol Soc Am 40:227–240Google Scholar
  225. Richards AG (1949) Studies on arthropod cuticle. 3. The chitin of Limulus. Science 109:591–592.  https://doi.org/10.1126/science.109.2841.591 CrossRefGoogle Scholar
  226. Richards AG (1951) The integument of arthropods. The chemical components and their properties, the anatomy and development, and the permeability. University of Minnesota Press, Minneapolis, p 411Google Scholar
  227. Richards AG (1952) Studies on arthropod cuticle. VII. Patent and masked carbohydrate in the epicuticle of insects. Science 115:206–208Google Scholar
  228. Richards AG (1958) The cuticle of arthropods. Ergebnisse Biol 20:1–26.  https://doi.org/10.1007/978-3-642-51754-9_1 CrossRefGoogle Scholar
  229. Richards AG, Anderson TF (1942) Electron microscope studies of insect cuticle, with a discussion of the application of electron optics to this problem. J Morphol 71:135–184Google Scholar
  230. Richards AG, Cutkomp LK (1946) Correlation between the possession of a chitinous cuticle and sensitivity to DDT. Biol Bull 90:97–108.  https://doi.org/10.2307/1538214 CrossRefGoogle Scholar
  231. Richards AG, Korda FH (1948) Studies on arthropod cuticle. 2. Electron microscope studies of extracted cuticles. Biol Bull 94:212–235.  https://doi.org/10.2307/1538249 CrossRefGoogle Scholar
  232. Richards AG, Pipa RL (1958) Studies on the molecular organization of insect cuticle. Smithsonian miscellaneous collections, vol 137. Smithsonian Institution, Washington, DC, pp 247–262Google Scholar
  233. Rigby GW (1936a) Carbohydrate derivatives and process of making the same. US Patent 2,033,787Google Scholar
  234. Rigby GW (1936b) Substantially undegraded deacetylated chitin and process for producing the same. US Patent 2,040,879Google Scholar
  235. Rigby GW (1936c) Process for the preparation of films and filaments and products thereof. US Patent 2,040,880Google Scholar
  236. Rigby GW (1936d) Emulsion. US Patent 2,047,225Google Scholar
  237. Rigby GW (1936e) Chemical process and chemical compounds derived therefrom. US Patent 2,047,226Google Scholar
  238. Rigby GW (1937) Chemical products and process of preparing the same. US Patent 2,072,771Google Scholar
  239. Roberts GAF (ed) (1992) Chitin chemistry, 1st edn. Macmillan Press, London. ISBN 9781349115471Google Scholar
  240. Roche J (1972) Eloge—Paul Karrer (1889–1971). Bull Acad Natl Méd 156(4–5):89–92Google Scholar
  241. Rouget Ch (1859) Des substances amylacées dans les tissus des animaux, spécialement les articulés (chitine). C R Hebd Séances Acad Sci 48:792–795Google Scholar
  242. Rudall KM (1955) The distribution of collagen and chitin. Symp Soc Exp Biol 9:49–71Google Scholar
  243. Rudall KM (1963) The chitin/protein complexes of insect cuticles. Advances in insect physiology, vol 1. Academic Press, London, pp 257–313.  https://doi.org/10.1016/s0065-2806(08)60177-0 CrossRefGoogle Scholar
  244. Rudall KM (1965) Skeletal structure in insects. In: Goodwin TW (ed) aspects of insect biochemistry. Academic Press, London, pp 83–92Google Scholar
  245. Rudall KM (1967) Conformation in chitin–protein complexes. In: Ramachadran GN (ed) Conformation of biopolymers. Papers read at an international symposium held at the University of Madras, 18–21 January 1967, Academic Press, London, vol 2, pp 751–765.  https://doi.org/10.1016/b978-1-4832-2843-3.50026-1 Google Scholar
  246. Rudall KM (1969) Chitin and its association with other molecules. J Polym Sci Part C Polym Symp 28:83–102.  https://doi.org/10.1002/polc.5070280110 CrossRefGoogle Scholar
  247. Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 49:597–636.  https://doi.org/10.1111/j.1469-185X.1973.tb01570.x CrossRefGoogle Scholar
  248. Sarmento B, das Neves J (2012) In: Sarmento B, das Neves J (eds) Chitosan-based systems for biopharmaceuticals. Wiley, Hoboken, p 600. ISBN 9781119964070Google Scholar
  249. Sashiwa H, Harding D (eds) (2015) Advances in marine chitin and chitosan. MDPI AD, Basel, p 484Google Scholar
  250. Schmidt C (1845) Zur vergleichenden physiologie der wirbellosen thiere Eine physiologisch-chemische untersuchung, vol LIV. Annalen der Chemie und Pharmacie Bd. Vieweg u. Sohn, Braunschweig, pp 298–311Google Scholar
  251. Schmiedeberg O (1891) Ueber die chemische zusammensetzung des knorpels. Arch Exp Pathol Pharmakol 28:355–404Google Scholar
  252. Schorigin P, Hait E (1934) Über die nitrierung von chitin. Ber Dtsch Chem Ges 67:1712–1714.  https://doi.org/10.1002/cber.19340671013 CrossRefGoogle Scholar
  253. Schorigin P, Hait E (1935) Über die acetylierung des chitins (Vorläufig. Mitteil.). Ber Dtsch Chem Ges 68:971–973Google Scholar
  254. Schorigin P, Makarowa-Semljanskaja NN (1935a) Über die desaminierung von chitin und glucosamin. Ber Dtsch Chem Ges 68:965–969.  https://doi.org/10.1002/cber.19350680545 CrossRefGoogle Scholar
  255. Schorigin P, Makarowa-Semljanskaja NN (1935b) Über die methyläther des chitins (Vorläufig. Mitteil.). Ber Dtsch Chem Ges 68:969–971.  https://doi.org/10.1002/cber.19350680546 CrossRefGoogle Scholar
  256. Sharnshina JL, Berton P, Rogers RD (2019) Advances in functional chitin materials: a review. ACS Sustain Chem Eng 7:6444–6457.  https://doi.org/10.1021/acssuschemeng.8b06372 CrossRefGoogle Scholar
  257. Simonin F (1856) Notice biographique sur M. Henri Braconnot. C R Travaux Soc Méd Nancy 1834–1855:51–79Google Scholar
  258. Slagel R, Sinkovitz G (1973a) Paper products of improved dry strength. US Patent 3.709.780Google Scholar
  259. Slagel R, Sinkovitz G (1973b) Chitosan graft copolymers for making paper products of improved dry strength. US Patent 3.770.673Google Scholar
  260. Smedley E, Rose HJ, Rose HJ (1845) Encyclopædia_Metropolitana. Volume VIII. General view of the animal kingdom, and of the circumstances distinguishing it from the vegetable kingdom. Section I. William Clowes & Sons, London, pp 215–217Google Scholar
  261. Spedding H (1964) Infrared spectroscopy and carbohydrate chemistry. Adv Carbohydr Chem 19:23–49.  https://doi.org/10.1016/S0096-5332(08)60278-7 CrossRefGoogle Scholar
  262. Städeler G (1859) Untersuchungen über das fibroïn, spongin und chitin, nebst bemerkungen über den thierischen schleim. Justus Liebigs Ann Chem 111:12–28.  https://doi.org/10.1002/jlac.18591110103 CrossRefGoogle Scholar
  263. Straus-Durckeim H (1828) Considérations générales sur l’anatomie comparé des animaux articulés. Levrault FG, Strasbourg, p 463Google Scholar
  264. Tiemann F (1884) Einiges über den abbau von salzsaurem glucosamin. Ber Dtsch Chem Ges 17:241–251.  https://doi.org/10.1002/cber.18840170174 CrossRefGoogle Scholar
  265. Tiemann F, Landolt RH (1886) Specifisches drehungsvermögen und krystallform des bromwasserstoffsauren glucosamins. Ber Dtsch Chem Ges 19:155–157.  https://doi.org/10.1002/cber.18860190143 CrossRefGoogle Scholar
  266. Tóth G, Zechmeister L (1939) Chitin content of the mandible of the snail (Helix pomatia). Nature 144:1049.  https://doi.org/10.1038/1441049c0 CrossRefGoogle Scholar
  267. Tracey MV (1955) Chitin. In: Paech K, Tracey MV (eds) Modern methods of plant analysis, vol II. Springer, Berlin, pp 264–274Google Scholar
  268. Tracey MV (1957) Chitin. Rev Pure Appl Chem 7:1–14Google Scholar
  269. Tsugita T (1990) Chitin/chitosan and their application. In: Voigt MN, Botta JR (eds) Advances in fisheries technology and biotechnology for increased profitability. Technomic Publisher Inc., Basel, pp 287–298Google Scholar
  270. van Iterson G, Jr Meyer KH, Lotmar W (1936) Über den feinbau des pflanzlichen chitins. Recl Trav Chim Pays-Bas 55:61–63Google Scholar
  271. Wettstein A (1972) Paul Karrer 1889–1971. Helv Chim Acta 55:313–328.  https://doi.org/10.1002/hlca.19720550202 CrossRefGoogle Scholar
  272. Whistler RL, Smart CL (1953) Chitin. In: Whistler RL, Smart CL (eds) Polysaccharide chemistry. Academic Press Inc, New York, pp 395–405Google Scholar
  273. White CFA (1944) Color photography. US Patent 2,363,764Google Scholar
  274. Wigglesworth VB (1948) The insect cuticle. Biol Rev 23:408–451.  https://doi.org/10.1111/j.1469-185X.1948.tb00566.x CrossRefGoogle Scholar
  275. Wigglesworth VB (1957) The physiology of insect cuticle. Annu Rev Entomol 2:37–54.  https://doi.org/10.1146/annurev.en.02.010157.000345 CrossRefGoogle Scholar
  276. Winterstein E (1893) Zur kenntniss der pilzcellulose. Ber Dtsch Bot Ges 11:441–445Google Scholar
  277. Winterstein E (1894a) Ueber ein stickstoffhaltiges spaltungsprodukt der pilzcellulose. Ber Dtsch Bot Ges 27:3113–3115Google Scholar
  278. Winterstein E (1894b) Zur kenntniss der in den membrane der pilze enthaltenen bestandtheile. Z Physiol Chem Hoppe-Seyler’s 19:521–562Google Scholar
  279. Winterstein E (1895a) Zur kenntniss der in den membrane der pilze enthaltenen bestandtheile. Z Physiol Chem Hoppe-Seyler’s 19:134–151Google Scholar
  280. Winterstein E (1895b) Ueber pilzcellulose. Ber Dtsch Chem Ges 13:65–70Google Scholar
  281. Winterstein E (1895c) Sur un produit de décomposition azote de la cellulose de champignons. Bulletin de la Société Chimique de Paris, vol XIV. Troisième série. Masson et Cie, éditeurs, libraires de l’Académie de Médecine, Paris, pp 502–503Google Scholar
  282. Winterstein E (1895d) Sur les produits de dédoublement de la cellulose de champignons. Bulletin de la Société Chimique de Paris, vol XIV. Troisième série. Masson et Cie, éditeurs, libraires de l’Académie de Médecine, Paris, pp 902–903Google Scholar
  283. Wisniak J (2015) Charles Hatchett: the discoverer of niobium. Educ Química 26:346–355Google Scholar
  284. Wolfrom ML (1958) US Patent 2,832,766 (Chem Abstracts 52, 20913)Google Scholar
  285. Wolfrom ML, Han TMS (1959) The sulfonation of chitosan. J Am Chem Soc 81:1764–1766.  https://doi.org/10.1021/ja01516a061 CrossRefGoogle Scholar
  286. Wolfrom ML, Maher GG, Chaney A (1958) Chitosan nitrate. J Org Chem 23:1990–1991.  https://doi.org/10.1021/jo01106a049 CrossRefGoogle Scholar
  287. Yao K, Li J, Yao F, Yin Y (eds) (2012) Chitosan-based hydrogels: functions and applications. CRC Press, Taylor & Francis Group, Boca Raton, p 511. ISBN 978-1-4398-2114-5Google Scholar
  288. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174.  https://doi.org/10.3390/md13031133 CrossRefGoogle Scholar
  289. Yu C, Kecen X, Xiaosai Q (2018) Grafting modification of chitosan. Biopolymer grafting—synthesis and properties. Elsevier, Amsterdam, pp 298–364.  https://doi.org/10.1016/b978-0-323-48104-5.00007-x CrossRefGoogle Scholar
  290. Zechmeister L, Tóth G (1931) Zur kenntnis der hydrolyse von chitin mit salzsäure (I. Mitteil.). Ber Dtsch Chem Ges 64:2028–2032.  https://doi.org/10.1002/cber.19310640822 CrossRefGoogle Scholar
  291. Zechmeister L, Tóth G (1932) Zur kenntnis der hydrolyse von chitin mit salzsäure (II. Mitteil.). Ber Dtsch Chem Ges 65:161–162.  https://doi.org/10.1002/cber.19320650209 CrossRefGoogle Scholar
  292. Zechmeister L, Tóth G (1933) Ein beitrag zur desamidierung des glucosamins. Ber Dtsch Chem Ges 66:522–525.  https://doi.org/10.1002/cber.19330660416 CrossRefGoogle Scholar
  293. Zechmeister L, Tóth G (1934) The comparison of herbal and animal chitin. Hoppe-Seylers Z Physiol Chem 223:53–56.  https://doi.org/10.1515/bchm2.1934.223.1-2.53 CrossRefGoogle Scholar
  294. Zechmeister L, Tóth G (1939a) Chitin und seine spaltprodukte. Fortschritte der chemie organischer naturstoffe, vol 2. Wien Verlag von Julius Springer, Berlin, pp 212–247Google Scholar
  295. Zechmeister L, Tóth G (1939b) Chromatographische zerlegung der chitinase. Naturwissenschaften 27:367Google Scholar
  296. Zechmeister L, Tóth G (1939c) Chromatographie der in der chitinreihe wirksamen enzyme des emulsins. Enzymologia 7:165–169Google Scholar
  297. Zechmeister L, Grassmann W, Tóth G, Bender R (1932) Über die verknüpfungsart der glucosamin-reste im chitin. Ber Dtsch Chem Ges 65:1706–1708.  https://doi.org/10.1002/cber.19320651016 CrossRefGoogle Scholar
  298. Zechmeister L, Tóth G, Balint M (1939a) Uber die chromatographische trennung einiger enzyme des emulsins. Enzymologia 5:302–306Google Scholar
  299. Zechmeister L, Tóth G, Vajda E (1939b) Chromatographie der in der chitinreihe wirksamen enzyme der weinbergsgschneck (Helix pomatia). Enzymologia 7:170–171Google Scholar
  300. Zhao DY, Yu S, Sun BN, Gao S, Guo SH, Zhao K (2018) Biomedical applications of chitosan and its derivative nanoparticles. Polymers 10:462.  https://doi.org/10.3390/polym10040462 CrossRefGoogle Scholar
  301. Zikakis JP (ed) (1984) Chitin, chitosan, and related enzymes. Academic Press, Inc., Florida, Orlando, p 448. ISBN 9780323149976Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratoire Chrono-environnement, UMR 6249, UFR Sciences et TechniquesUniversité Bourgogne Franche-ComtéBesançonFrance

Personalised recommendations